دوست عزیز، به سایت علمی نخبگان جوان خوش آمدید

مشاهده این پیام به این معنی است که شما در سایت عضو نیستید، لطفا در صورت تمایل جهت عضویت در سایت علمی نخبگان جوان اینجا کلیک کنید.

توجه داشته باشید، در صورتی که عضو سایت نباشید نمی توانید از تمامی امکانات و خدمات سایت استفاده کنید.
صفحه 1 از 8 12345678 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 , از مجموع 73

موضوع: انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

  1. #1
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نیروگاه گازی
    نیروگاه گازی به نیروگاهی می گویند که برمبنای سیکل گاز( سیکل برایتون) کارمی کند. وازسیکل های حرارتی می باشد، یعنی سیال عامل کاریک گاز است. عامل انتقال وتبدیل انرژی گازی است ،( مثلا هوا)
    درنیروگاه های بخارعامل انتقال : بخارمایع می باشد.
    نیروگاه گازی دارای توربین گازی است ،یعنی باسیکل رایتون کارمی کند.ساختمان آن درمجموع ساده است :
    -1 کمپرسور: وظیفه فشردن کردن هوا .
    2 - اتاق احتراق : وظیفه سوزاندن سوخت درمحفظه .
    -3 توربین : وظیفه گرداندن ژنراتور .
    کمپرسور به کاررفته درنیروگاه های گازی شبیه توربین است ، دارای رتوری است که برروی این رتور پره متحرک است ، هوا به حرکت درآمده وبه پره های ساکنی برخوردکرده ، درنتیجه جهت حرکت هوا عوض شده واین هوا بازبه پره های متحرک برخورد کرده واین سیکل ادامه دارد ودرهرعمل هوا فشرده ترمی شود.
    کمپرسور مصرف کننده عظیم انرژی است .
    هوای فشرده گرم است .

    هوای فشرده کمپرسور وارد اتاق احتراق که دارای سوخت گازوئیل است می شود .
    چون هوای فشرده شده گرم است ودراتاق احتراق سوخت آتش گرفته وهوافشرده وداغ می شود.
    هوای داغ فشرده کارهمان بخارداغ فشرده توربین های بخار راانجام می دهد .
    هوای داغ فشرده رابه توربین می دهیم ؛ توربین دارای پره های متحرک وساکن است .
    پره های ثابت چسبیده به استاتور می باشد ؛ پره های متحرک چسبیده به رتور می باشد.
    حال ژنراتور رامی توان به محور وصل کرده واز ترمینال های ژنراتور می توان برق گرفت. طول نیروگاه ممکن است به m 20 است. ژنراتور را می توان به محل B ویا A متصل نمود, اما محل A بهتراست .
    قدرت نیروگاه های گازی از 1 M w وتا بالای 100Mw نیز ساخته می شود .
    نحوه راه اندازی واستارت نیروگاه چگونه است ؟
    درابتدا نیاز به یک عامل خارجی است تا توربین رابه سرعت 3000 دوربرساند.
    حسن نیروگاه :
    -1 سادگی آن است –تمام آن روی یک شافت سواراست .
    2 - ارزان است – چون تجهیزات آن کم است . یکی از عواملی که برروی راندمان تأثیرمی گذارداین است که هوای ورودی چه دمایی دارد.
    -3 سریع النصب است .
    -4 کوچک است . درسکوهای نفتی که نیاز به برق زیادی می باشد بایدازنیروگاه گازی استفاده کرد، تاجای کمتری بگیرد.
    -5 احتیاج به آب ندارد. ( درسیکل اصلی نیروگاه نیاز به آب نیست ) اما درتجهیزات جنبی نیازبه آب است برای خنک کردن هیدروژن به کاررفته جهت سردکردن ژنراتور درسرعت های بالا .
    -6 راه اندازی این نیروگاه سریع است .
    7 - پرسنل کم .
    زمانی نیروگاه گازی خاموش است که دراتاق احتراق سوخت نباشد .
    یک نیروگاه بخار رابعد از راه اندازی نباید خاموش کرد .
    اما نیروگاه گازی بدین صورت است که صبح می توان روشن کردوآخرشب خاموش نمود .
    نیروگاه گازی بسیارمناسب برای بارپیک است ونیروگاه بخاربرای بارپیک نامناسب است .
    معایب :
    :1 آلودگی محیط زیست زیاد است .
    2 : عمرآن کم است .( فرسودن توربین وکمرسور)
    سوخت مازوت به علت آلودگی بیشتری که نسبت به سوخت گازوئیل دارد، کمتربه کارمی رود.
    :3 استهلاک زیاداست . ( پره توربین ، پره کمپرسور)
    :4 راندمان کم است . ( مصرف سوخت آن زیاد است ) ؛ این نقیصه ای است که کشورهای اروپایی با آن مواجه اند .
    دلایل راندمان پایین :
    الف ) خروج دود بادمای زیاد
    ب ) حدود 3/1 توان توربین صرف کمپرسور می شود . بنابراین درنیروگاه گازی برای استفاده درازمدت اصلا جایزنیست چراکه هزینه مصرف سوخت گران است .
    :5 امکان استفاده ازسوخت جامد فراهم نیست . ( مانند زغال سنگ ) چراکه بلافاصله پره های روتورپرازدود می شود .
    نیروگاه های گازی را اگربخواهیم برای مدت طولانی استفاده کنیم ، هزینه نیروگاه گازی بالا ست .
    نیروگاه گازی را ازجایی استفاده کنند که امکان بهره برداری زمان بهره برداری زیر2000 ساعت باشد .
    اگرزمان بهره برداری بالای 2000 ساعت باشد (رسال) نیروگاه بخار اگرزمان بهره برداری درسال بالای 5000ساعت باشد ، نیروگاه آبی استفاده می شود.
    درکشورما برق عمده مصرفی برق خانگی است ( 60% ) وحدود 30 % برق صنعتی است . درنتیجه 50 % نیروگاه های کشورباید هرشب روشن شود ؛ بنابراین قسمت عمده برق تولیدی ماباید ازنوع نیروگاه گازی باشد.
    نیروگاه گازی رابه دلیل ارزانی درکارخانجات نیز می توان به کاربرد .نیروگاه گازی را درنیروگاه اتمی نیزاستفاده می شود جهت سردکردن رآکتور به کارمی رود که درنتیجه هواداغ وفشرده می شود ودرنتیجه به نیروگاه گازی داده وبرق مصرفی نیروگاه اتمی راتأمین می کنند.
    درنیروگاه های گازی جهت افزایش راندمان روش هایی رااتخاذ می کنند.
    -1 دود خروجی هوای ورودی به اتاق را گرم می کند .( سیکل پیچیده ترشده اما راندمان بالا می رود.)
    حالت اول : دودباهواب ورودی کمپرسورکناریکدیگرقرارداده دراین صورت راندمان تجهیزات به شدت افت می کند.
    حالت دوم : باروش ذیل راندمان 1 الی 2 درصدقابل افزایش است ؛ ( هوای ورودی به اتاق احتراق گرم می شود)
    -2 استفاده از توربین های دو مرحله ای :
    زیاد شدن راندمان مستلزم مخارج وصرف هزینه نیز می باشد .
    -2 استفاده از کمپرسور دومرحله ای هر چه دمای ورودی کمپرسور پایین ترباشد ؛ راندمان بیشتراست .
    بااین روش دمای ورودی کمپرسور به طورمصنوعی پایین نگه داشته می شود درمرحله L p به دلیل بالارفتن فشارهواگرم می شود که ازکولراستفاده می کنند ؛ آب سرد برروی لوله فشارهوا ریخته وهواخنک کرده آب گرم می شود وخارج می شود .
    بالاترین راندمان چیزیث درحدود 35% است که نیروگاه دارای کمپرسور دومرحله ای توربین دومرحله ای وپیش گرم کن می باشد.
    نیروگاه گازی به این معنا نیست که سوخت ان گازاست ، بلکه توربین آن گازی است وسوخت آن مایع است یا گازوئیل است که اکثرا گازوئیل است .
    درکشورما به دلیل زیادبودن سوخت گازوئیل ، نیروگاه گازی باسوخت گازوئیل نیروگاه گازی باسوخت گازوئیل به کار میرودومرسوم است اما درکشورهای اروپایی به دلیل زیادبودن سوخت جامد ، نیروگاه گازی به نحو دیگری طراحی شده که باسوخت جامد کارمی کند ، به این نیروگاه ها ،نیروگاه گازی سیکل بسته می گویند.
    هوای داغ ناشی ازاحتراق راداخل گرم کن می چرخانیم وبعد هوارابیرون می فرستیم .
    ملاحظه می شودکه هوای داغ ناشی از احتراق داخل توربین می شود .لذامی توان ازسوخت جامد استفاده کردکه این نوع ساده ترین نوع نیروگاه گازی سیکل بسته می باشد.
    می توان سیکل فوق راکامل ترکرد. اگرهوای ورودی به کمپرسورتصفیه شده باشد ، پره های توربین دارای عمرزیادی خحواهدبود. مشکل ایجاد این است که هوای خارج شده ازتوربین به دلیل تصفیه بودن بایداستفاده شود ، پس هواس خروجی ازتوربین رااستفاده می کنیم ، اما این هوا داغ است وگاز وارد کمپرسور شود راندمان افت می کند ؛ لذااز کولراستفاده می کنیم وهواراسرد می کنند .
    در نیروگاه گازی هرچه هوای ورودی به کمپرسور سردتر باشد، راندمان افزایش م یابد. لذا نیروگاه های گازی درزمستان راندمان بهتری دارند.
    محاسن نیروگاه های گازی سیکل بسته :
    -1 امکان استفاده ازسوخت جامد فراهم می شود.
    -2 عمرزیاد ( خوردگی پره ها کم است )
    -3 چون سیکل بسته است ، لذاضرورت نداردکه فشارهوای خروجی توربین 1 Atm باشد، پس می توان سطح کارفشار هوارابالا برد، به جای 1 Atm از 10 Atm که چون هوای فشرده ترشده ، جای کمتری گرفته وحجم کمپرسور وتوربین درنهایت کوچک ترمی شود.
    معایب :
    -1 راندمان درمقایسه باسیکل بازکمتر است . 4 الی 5 درصد راندمان کاهش می یابد.
    -2 هزینه زیاداست .
    درسوخت مایع نیروگاه های گازی سیکل بسته ، اجازه داریم توربین رادوقسمتی بسازیم .
    کمپرسورهواراگرفته وداخل اتاق احتراق می سوزاند ، هوای خروجی آن راوارد گرم کن می کنیم که خود گرم کن یک سیکل بسته راتشکیل می دهد.
    توربین کمکی قدرت لازم ازژنراتور کوچک درقسمت توربین کمکی به کاربرد .
    درنیروگاه گازی سیکل بازدارای معایب زیراست :
    قدرت کمپرسور خیلی ازانرژی توربین رامی گیرد وهمچنین دود خروجی داغ است 3 00 C درنتیجه سوخت ایجاد شده به هدرمی رود ؛ لذا راندمان کاهش می یابد.
    استفاده از نیروگاه سیکل ترکیبی ( نیروگاه گازی درکنار نیروگاه بخار(
    هوای گرم خروجی ازتوربین رابال اضافه کردن اکسیژن به آن به طرف بویل نیروگاه بخار برده می شود .
    راندمان این قبیل نیروگاه ها50 % می باشد.
    __________________

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  2. کاربرانی که از پست مفید ریپورتر سپاس کرده اند.


  3. #2
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نیروگاه هسته ای
    نیروگاههای هسته ای حدود 17 درصد برق را تأمین می کنند برخی کشورها برای تولید نیروی الکتریکی خود، وابستگی بیشتری به انرژی هسته ای دارند. براساس آمار آژانس انرژی اتمی، 75 درصد برق کشور فرانسه در نیروگاههای هسته ای تولید می شود و در ایالات متحده، نیروگاههای هسته ای 15 درصد برق را تأمین می کنند. بیش از چهارصد نیروگاه هسته ای در سراسر دنیا وجود دارد که بیش از یکصد عدد آنها در ایالات متحده واقع شده است. یک نیروگاه هسته ای بسیار شبیه به یک نیروگاه سوخت فسیلی تولید کننده انرژی الکتریکی است و تنها تفاوتی که دارد، منبع گرمایی تولید بخار است. این وظیفه در نیروگاه هسته ای برعهده رآکتور هسته ای است.
    رآکتور هسته ای
    همه رآکتورهای هسته ای تجاری از طریق شکافت هسته ای گرما تولید می کنند. همانطور که می دانید، شکافت اورانیوم نوترون های زیادی آزاد می کند، بیشتر از آنکه لازم باشد. اگر شرایط واکنش مساعد باشد فرآیند به طور خود به خودی انجام می شود و یک زنجیره از شکافت های هسته ای به وجود می آید. نوترونهایی که از فرآیند شکافت آزاد می شوند، بسیار سریعند و هسته های دیگر نمی توانند آنها را به راحتی جذب کنند. از این رو در اکثر رآکتورها قسمتی به نام کند کننده نوترون وجود دراد که در آن از سرعت نوترونها کاسته می شود و در نتیجه نوترونها به راحتی جذب می شوند. چنین نوترونهایی آن قدر کند می شوند تا با هسته راکتور به تعادل گرمایی برسند. نام گذاری این نوترونها به نوترونهای گرمایی یا نوترونهای کند هم از همین رو است.
    مقدار انرژی گرمایی که در یک رآکتور پارامتر بحرانی است و با کنترل آن می توان رآکتور را در حالت عادی نگاه داشت. این کار با تنظیم تعداد میله های کنترل درون رآکتور صورت می گیرد. میله کنترل از مواد جذب کننده نوترون ساخته شده است و با افزایش یا کاهش جذب نوترون، می توان گسترش واکنش زنجیره ای را کاهش یا افزایش داد. البته با استفاده از کند کننده های نوترون یا تغییر دادن نحوه قرار گیری میله های سوخت هم می توان انرژی خروجی رآکتور را کنترل کرد.

    طراحی یک رآکتور
    رآکتورهای هسته ای برای انجام واکنش های هسته ای در مقیاس وسیع طراحی می شوند. گرما، اتمهای جدید و تابش بسیار شدید نوترون، محصولات واکنش انجام شده در رآکتور هستند و بسته به استفاده ای که از رآکتور می شود، از یکی از محصولات استفاده می شود. در یک نیروگاه هسته ای تولید برق از انرژی گرمایی تولید شده برای چرخاندن توربین و درنهایت تولید انرژی الکتریکی استفاده می شود. در برخی رآکتورهای نظامی و آزمایشی بیشتر از باریکه نوترون پر انرژی استفاده می شود تا مواد ساده را به عناصر کم یاب و جدیدی تبدیل کنند.
    هدف از رآکتور هر چه باشد، برای به دست آوردن این محصولات لازم است یک واکنش هسته ای زنجیره ای به طور پیوسته ادامه یابد. برای ادامه یک واکنش زنجیره ای هم رآکتور باید در حالت بحرانی یا فوق بحرانی قرار داشته باشد. کند کننده و وسیله کنترل در فراهم آوردن چنین شرایطی نقش بسیار مهمی برعهده دارند.
    رآکتوری که از کند کننده استفاده می کند، رآکتور گرمایی یا رآکتور کند نامیده می شود. این رآکتورها با توجه به نوع کند کننده ای که مورد استفاده قرار می گیرد طبقه بندی می شوند. آب معمولی ( آب سبک )، آب سنگین و گرافیت، مواد رایج کند کننده هستند. البته گرافیت مشکلات فراوانی را به وجود می آورد و بسیار خطرآفرین است، مانند حادثه انفجار چرنوبیل یا آتش سوزی وانیدسکیل.
    رآکتورهایی که از کند کننده ها استفاده نمی کنند، رآکتورهای سریع خوانده می شوند. در این نوع رآکتورها فشار ذرات نوترون بسیار بالا است و از این رو می توان برخی واکنش های هسته ای را در آنها انجام داد که ترتیب دادن آنها در رآکتور کند بسیار مشکل است. شرایط خاصی که در رآکتورهای سریع وجود دارد، سبب می شود بتوان هسته اتم توریوم و برخی ایزوتوپ های دیگر را به سوخت هسته ای قابل استفاد تبدیل کرد. چنین رآکتوری می تواند سوختی بیش از حد نیاز خود را تولید کند و به همین دلیل به آن رآکتور سوخت ساز هم گفته می شود.

    در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی می شود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده می شود. اما آب نوعی کند کننده هم محسوب می شود و از این رو نمی تواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمک های سدیم استفاده می شود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد می کنند.
    در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم می کند و آن را به بخار تبدیل می کند. بخار آب توربین بخار را به حرکت در می آورد ، توربین نیز ژنراتور را می چرخاند و به این ترتیب انرژی تولید می شود. این آب و بخار آن در تماس مستقیم با راکتور هسته ای است و از این رو در معرض تابش های شدید رادیواکتیو قرار می گیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد می کنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده می کنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.



    انواع رآکتورهای گرمایی
    در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هسته ای ( ایزوتوپ قابل شکافت القایی)، مخزن بخار و لوله های منتقل کننده آن، دیواره های حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، می توان آنها را به سردسته تقسیم کرد.
    الف – کانالهای تحت فشار در رآکتورهای rbmk و candu استفاده می شوند و می توان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد.
    ب – مخزن بخار پرفشار داغ، رایج ترین نوع رآکتور است و در اغلب نیروگاههای هسته ای و رآکتورهای دریایی ( کشتی، ناوهواپیمابر یا زیردریایی ) از آن استفاده می شود. این مخزن می تواند به عنوان لایه حفاظتی نیز عمل کند.
    ج – خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده می شود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار می گیرد و معمولاً از هلیوم برای آن استفاده می شود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید می کند که گاز خنک کن می تواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحی های قدیمی تر گاز خنک کن را به یک مبدل حرارتی می فرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.

    بقیه اجزای نیروگاه هسته ای
    غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هسته ای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد.
    مخزن بخار تحت فشار معمولا درون یک ساختمان بتونی تعبیه می شود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل می کند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار می گیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفته اند و کارکنان می توانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است.
    در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت می شود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری ( مشابه حادثه یازده سپتامبر ) هم تخریب نمی شود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.

    رآکتورهای هسته ای طبیعی
    در طبیعت هم می توان نشانه هایی از رآکتور هسته ای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هسته ای طبيعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون ( قاره آفریقا ) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمی گیرند، زیرا واپاشی رادیواکتیو این مواد ( به خصوص u-235 ) در این زمان طولانی 5/4 میلیارد ساله ( سن زمین )، فراوانی u-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیره ای رسیده است.
    این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنش های زنجیره ای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار می شد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل می شدند و دوباره رآکتور به راه می افتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل می کرد و برای صدها هزار سال، این رآکتور را فعال نگاه می داشت.
    مطالعه و بررسی این رآکتورهای هسته ای طبیعی بسیار ارزشمند است، زیرا می تواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکت ها را شناسایی کنند، می توانند راه حل های جدیدی برای دفن زباله های هسته ای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعه ای بشری به بار نیاورند

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  4. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  5. #3
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    انواع رآکتورهای گرمایی
    الف – کند سازی با آب سبک:
    a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR)
    b- رآکتور آب جوشان Boiling Water Reactor(BWR)
    c- رآکتور D2G

    ب- کند سازی با گرافیت:
    a- ماگنوس Magnox
    b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR)
    c- RBMK
    d- PBMR

    ج – کند کنندگی با آب سنگین:
    a – SGHWR
    b – CANDU

    رآکتور آب تحت فشار، PWR
    رآکتور PWR یکی از رایج ترین راکتورهای هسته ای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده می کند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده می کند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش می آید، از این دوچرخه خنک ساز اولیه را به گونه ای طراحی می کنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده می کند. دراین چرخه آب جوش می آید و بخار داغ تشکیل می شود، بخار داغ یک توربین بخار را می چرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید می کند.
    PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایج ترین نوع رآکتورهای هسته ای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هسته ای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار می گیرند.
    خنک کننده
    همان طور که می دانید، برخورد نوترونها با سوخت هسته ای درون میله های سوخت، موجب شکافت هسته اتمها می شود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد می کند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میله های سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی می دهند. ) در PWR، میله های سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفته اند و آب از کف رآکتور به بالا جریان پیدا می کند. آب از میان این میله های سوخت عبور می کند و به شدت گرم می شود، به طوری که به دمای 325 درجه سانتی گراد می رسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم می شود و بخاری با دمای 270 درجه سانتی گراد تولید می کند تا توربین را بچرخاند.

    کند کننده
    نوترونهای حاصل از یک شکافت هسته ای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هسته ای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد.
    در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست می دهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما می شوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت می شود.
    مکانیسم حساسی که هر رآکتور هسته ای را کنترل می کند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد می شود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب می شوند و در نهایت یک واکنش زنجیره ای روی می دهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد می شود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین می کند. معادله بوتنرمن، این ارتباط را توصیف می کند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید می شوند و سبب می شوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند.
    یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش می یابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد می رسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمی آید، ولی به شدت از خاصیت کند کنندگی اش کاسته می شود، بنابراین آهنگ واکنش شکافت هسته ای کاهش می یابد، حرارت کمتری تولید می شود و دما پایین می آید. دما که کاهش یابد، توان رآکتور افزایش می یابد و دما که افزایش یابد توان راکتور کاهش می یابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین می کند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است.
    در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل می کنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، می توان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج می کند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است.
    یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام می شود و حرارت زیادی آزاد می شود که می تواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.

    رآکتور آب جوشان، BWR
    در رآکتور آب جوشان، از آب سبک استفاده می شود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو می رسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می آید.
    رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار می گیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت می گیرد و در نتیجه بخش بالایی کمتر است.
    در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میله های کنترل و تغییر جریان آب درون راکتور.
    الف – بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور می شود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس می دهد.
    ب – تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار می گیرد که راکتور بین 70 تا صد درصد توان خود کار می کند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج می شوند و آب درون قلب رآکتور بیشتر می شود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب ها بیشتر در رآکتور باقی می مانند، سطح آب کاهش می یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می یابد و در نهایت توان رآکتور کاهش می یابد.
    بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور می کند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب می شوند، می رود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل می دهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور می توان به قسمت توربین وارد شد.
    در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی می شود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور می شود که خود، سبب افزایش توان خروجی می شود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق می شود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب می شود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار می گیرد و در هر دسته بین 74 تا 100 میله سوخت قرار می گیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره می شود.

    • رآکتور D2G
    رآکتور هسته ای D2G را می توان در تمام ناوهای دریایی ایالات متحده می توان پیدا کرد. D2G مخفف عبارت زیراست:
    رآکتور ناو جنگی D=Destroyer-sized reactor
    نس دوم 2=Second Geneation
    ساخت جنرال الکتریک G= General – Electric built
    بدین ترتیب، D2G را می توان مخفف این عبارت دانست: رآکتور هسته ای نسل دوم ویژه ناوهای جنگی ساخت جنرال الکتریک. این رآکتور برای تولید حداکثر 150 مگا وات انرژی الکتریکی و عمر مفید 15 سال مصرف معمولی طراحی شده است.
    در این رآکتور، برای مخزن بخار دو رآکتور وجود دارد و طوری طراحی شده که بتوان هر دو اتاق توربین را با یک رآکتور به راه انداخت. اگر هر دو رآکتور فعال باشند، ناو به سرعت 32 گره می رسد. اگر یک رآکتور فعال باشد و توربین ها متصل به هم باشند، سرعت ناو به 25 تا 27 گره خواهد رسید و اگر فقط یک رآکتور فعال باشد ولی توربین ها جدا باشند، سرعت فقط 15 گره خواهد بود.

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  6. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  7. #4
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نگاهي به تکنولوژي سانتريفوژهاي گازي جهت غني سازي اورانيوم
    غني سازي اورانيوم يکي از مراحل مهم چرخه توليد سوخت هسته يي است که روش هاي مختلفي براي اين کار وجود دارد ولي يکي از عملياتي ترين روش ها غني سازي توسط سانتريفوژهاي گازي است که در دنيا به طور عمده مورد استفاده قرار مي گيرد. در عصر حاضر غني سازي اورانيوم بخش قابل توجهي از هزينه توليد برق از رآکتورهاي هسته يي امروزي (حدود 10 درصد) را تشکيل مي دهد. اولين بار در پروژه منهتن امريکا، توليد صنعتي قابل ملاحظه اورانيوم غني شده به صورت ايزوتوپ اورانيوم شکافت پذير 235 انجام شد.

    در پروژه منهتن روش سانتريفوژ براي جدايي ايزوتوپ هاي اورانيوم 235 و 238 جواب خوبي داشت به طوري که ميزان جداسازي با تئوري مطابقت داشت، البته بعدها روش جداسازي به طريق نفوذ گازي جايگزين آن شد.

    روش سانتريفوژ براي جداسازي ايزوتوپ هاي سنگين مانند اورانيوم بسيار مناسب است زيرا به اختلاف جرم هاي مولکولي دو ايزوتوپ بستگي دارد. بيش از 95 درصد صنعت هسته يي جهان از سانتريفوژ گازي و روش پخش گازي براي غني سازي اورانيوم استفاده مي کنند که در اين مقاله به روش مهم سانتريفوژ گازي پرداخته مي شود. سانتريفوژ دستگاهي استوانه يي شکل است که يک روتور در وسط آن مي تواند دوران کند. اين روتور به طور متوسط در هر ثانيه هزار دور مي زند البته بايد گفته شود اين روتور يک تکه نيست زيرا در دورهاي بالا، فرکانس هاي رزونانسي پيش مي آيد. اين مساله را نيز بايد مد نظر داشت که دستگاه هاي طويل در يک فرکانس بحراني مشخص به صورت اريبي به نوسان درمي آيند. همچنين گفتن اين نکته ضروري است که با پيشرفت تکنولوژي در ساخت موتورهاي جديد و استفاده از موادي نظير فولاد ماراژين و کامپوزيت ها، دو روتور در هر ثانيه به فراتر از 1500 مي رسد که اکنون در کشورهاي پيشرفته از تکنولوژي جديد استفاده مي کنند. بايد يادآور شد يک سانتريفوژ حدوداً از 200 قطعه تشکيل شده که حدود 90 قطعه آن جهت ساخت به تکنولوژي بالايي نياز دارند به اين دليل که سرعت دوران در يک دستگاه بسيار بالا بوده و چون گاز UF6 خورنده است، از نظر طراحي و همچنين مواد استفاده شده در آنها از نظر متالورژيکي پيچيده است و دقت بالايي را طلب مي کند. دور بالاي روتور توسط يک موتور هيستريزيس سنکرون تامين مي شود.

    براي کاهش اصطکاک روتور در اين دور بالا داخل سانتريفوژ را توسط پمپ هاي روتوري و ديفيوژن خلأ مي کنند که اين خلأ حدود سه الي پنج torr است (هر torr برابر mmHg 1 است). بنابراين راه اندازي اين پمپ ها و موتور هيستريزيس برق بالايي را مصرف مي کند. جالب است بدانيد از مگنت هم استفاده مي شود. در واقع يک ياتاقان مغناطيسي قسمت بالاي روتور را ثابت نگه مي دارد و قسمت پايين روتور در تماس با ياتاقاني سوزني است. اين ياتاقان ها نقش بسيار مهمي در جلوگيري از ارتعاشات محوري روتور ايفا مي کند. ياتاقان بالايي که متعادل کننده دستگاه است، از يک آهن رباي توخالي تشکيل شده است. تکنولوژي سانتريفوژهاي فوق مربوط به سانتريفوژ نوع زيپه است که يک دانشمند آلماني بود. گفته مي شود نسخه سانتريفوژ اوليه زيپه به طول 30 تا 38 سانتيمتر و شعاع 81/3 سانتيمتر بوده است. از نظر تئوري سه تعريف مهم براي جداسازي اورانيوم وجود دارد. که اولين آن فاکتور جداسازي است که به صورت غلظت نسبي ايزوتوپ مورد نظر بعد از غني سازي به غلظت نسبي آن قبل از غني سازي گفته مي شود. دومين تعريف مهم عبارت از توان جداسازي است که نشان دهنده سرعت جداسازي و واحد آن مول بر ثانيه است. بالاخره آخرين تعريف واحد کار جداسازي است که با SWU نشان داده مي شود و به آن سو مي گويند که معرف ميزان جداسازي در يک واحد غني سازي و تابعي از غلظت است.

    تئوري سانتريفوژ

    زماني که روتور مي چرخد، نيروي گريز از مرکز به گاز داخل آن اعمال مي شود، به گونه يي که ايزوتوپ سنگين اورانيوم (238) به کناره ها و ايزوتوپ سبک تر اورانيوم (235) در مرکز جمع مي شود. در ارتفاع سانتريفوژ هم يک گراديان فشار وجود دارد. توزيع چگالي گاز در سانتريفوژ با استفاده از فرمول

    P®=P(0)exp( )

    به دست مي آيد که در آن r (شعاع دوران)، w (سرعت زاويه يي) و R (ثابت عمومي) گاز و T (دما بر حسب کلوين) است. اين توزيع چگالي بيانگر يک تعادل ديناميکي است.

    بايد گفته شود سانتريفوژهاي عملياتي امروزي از نوع جريان متقابل است. در اين نوع سانتريفوژ فاکتور جداسازي يک مرحله يي چند برابر مي شود. در اين نوع سانتريفوژ جريان سيال در دو جهت يکي در قسمت داخلي روتور و ديگري به طور معکوس در راستاي ديوار روتور باعث ايجاد جريان متقابل محوري مي شود که در نتيجه يک گراديان غنامحوري ايجاد مي شود.سانتريفوژهاي P1 و P2 از نوع زيپه هستند. در سانتريفوژ P1 از روتور آلومينيومي استفاده مي شود که چهار تکه است که به هم وصل شده اند. به دليل اينکه از مدنوساني روتور در دور بالا جلوگيري کرده و دور روتور قابل کنترل باشد، تعداد دور اين روتور 60هزار در دقيقه است. سانتريفوژ نوع P1 حدود دو متر طول و قطر 150 تا 200 ميلي متر دارد. سانتريفوژ نوع P2 تعداد دور آن فراتر از 90 هزار دور در دقيقه است و جنس روتور آن از نوع فولاد ماراژين بوده و دو تکه است. سانتريفوژ P2، يک متر طول و 145 ميلي متر قطر دارد. SWU مربوط به P2 بيش از دو برابر P1 است در واقع سرعت جداسازي P2 بيشتر از P1 است. پس مقدار خوراک گاز UF6 تزريق شده به آن نسبت به P1 بيشتر است.حداکثر توان جداسازي يک سانتريفوژ با Z و توان چهارم V متناسب است که در آن Z طول سانتريفوژ و V سرعت محيطي است يعني هر چه طول روتور افزايش يابد توان جداسازي بالا مي رود، ولي مساله ارتعاش خمشي را داريم بنابراين پارامتري به نام نسبت طول به قطر سانتريفوژ مطرح مي شود که محدوديت ايجاد مي کند.

    سايت سانتريفوژ

    در مقياس صنعتي جهت دستيابي به سرعت توليد محصول با درجه غناي مورد نياز به تعداد زيادي سانتريفوژ نياز است. سانتريفوژها در آبشار به صورت يک مجموعه سري و موازي قرار مي گيرند. هر مجموعه از سانتريفوژها که به شکل موازي قرار داشته باشند و با خوراکي با غناي يکسان تغذيه شوند، يک مرحله را تشکيل مي دهند. با اين وجود يک فرآيند پيوسته يي حاصل مي شود که در آن جريان گاز غني شده و تهي شده حاصل از مراکز مختلف با يکديگر ترکيب شده و جهت غني سازي يا تهي سازي از ساير مراحل که به طور سري قرار دارند، عبور مي کنند. در سايت سانتريفوژ ابتدا توسط اتوکلاو پودر UF6 تبديل به گاز UF6 مي شود سپس بعد از غني سازي توسط تله سرد دوباره به پودر غني شده تبديل مي شود.

    پارامترهاي مهم توسعه در صنعت غني سازي با سانتريفوژ

    هر سانتريفوژ بعد از نصب حدود 10 سال مي تواند بدون تعمير کار کند البته نبايد از مواد اوليه نامرغوب استفاده کرد و بازرسي هاي دوره يي انجام شود. هزينه تعويض هر دستگاه سانتريفوژ 10 درصد هزينه کل کار جداسازي است. هزينه مصرف برق 15 درصد SWU است. همچنين هزينه مديريت عملياتي، کارگر و مواد 10 درصد، بازگشت سرمايه ماشين سانتريفوژ 30 درصد و بازگشت سرمايه کارخانه سانتريفوژ 35 درصد کل SWU است. با توجه به مسائل فوق در بررسي راهکارهاي مختلف مربوط به افزايش ظرفيت ماشين، همواره بايد پس از ارزيابي، عوامل تعيين کننده، هزينه هاي دستگاه و واحد را به دقت بررسي کرد که آيا افزايش ظرفيت منجر به کاهش هزينه نهايي مي شود يا خير. در آينده با پيشرفت در طراحي سانتريفوژها، صرفه جويي قابل توجهي در هزينه ها حاصل خواهد شد اما در اين صنعت به مانند ساير پروژه هاي مهندسي حداکثر صرفه جويي، فقط از طريق بهينه سازي موفقيت آميز تعداد زيادي از عوامل متضاد نتيجه به دست خواهد داد. که آن هم جز استفاده از مديريت صحيح و استفاده از افراد خلاق و باانگيزه که با علوم روز دنيا آشنايي دارند حاصل نخواهد شد. هر چقدر در اين صنعت خطاي مهندسي را پايين آوريم يا در واقع دقت اندازه گيري را بالا ببريم،به صرفه جويي بالايي در اين صنعت از نظر اقتصادي دست خواهيم يافت.

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  8. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  9. #5
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نیروگاه - بهره برداری از پستهای فشار قوی
    برای دریافت مقاله کلیک کنید




    لینک دانلود معیوب است: مدیریت
    ویرایش توسط Asghar2000 : 15th December 2010 در ساعت 08:38 PM

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  10. #6
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    سیکل ترکیبی چیست؟


    سیکل ترکیبی چیست؟
    برای پاسخ به پرسش مذکور در ابتدا تعریفی از انواع توربین ها و اصول کلی کار آنها ارائه می دهیم.
    توربین ها اصو لا بر اساس عامل ایجاد کننده کار تقسیم بندی می گردند . اگر عامل فوق گاز باشد آن را بخاری اگر آب باشد آبی و چنانچه باد باشد توربین بادی گو یند. توجه داشته باشیم که منظور از گاز گاز ناشی از احتراق است. لذا نوع سوخت دخیل در آن که بر حسب مورد می تواند گازوئیل مازول یا گاز باشد در این تقسیم بندی ها اهمیت ندارد. (اگر چه در کشور ما سوخت گاز سوخت غالب این توربین هاست. )



    هر توربین گاز v94.2 متشکل از دو محفظه احتراق است که در طر فین توربین نصب هستند و سوخت گاز یا گازو ئیل پس از ورود به آن همراه با عملکرد سیستم جرقه مشتعل شده و با هوایی که از سمت ***** های ورودی وارد کمپرسور شده و پس از انبساط از آن خارج می شود وارد ناحیه محفظه احتراق شده محترق می گردد و گازی با درجه حرارت 1050 در جه سانتیگراد تو لید می نماید.


    گاز مذکور وارد توربین گاز شده و سبب گردش توربین و در نتیجه محور ژنراتور ده و تولید برق می کند. محصول خروجی از توربین گاز دودیست با درجه حرارت حدود 550 درجه سانتیگراد که به عنوان تلفات حرارتی از طریق دودکش وارد جو می شود و به ایت ترتیب توربین گاز در بهترین شرایط با بهره برداری حدود 33 درصد تولید انرژی می کند. به بیان دیگر 67 درصد دیگر به عنوان تلفات حرارتی محسوب و فاقد کارایی می باشد.


    ایده سیکل ترکیبی در واقع بازیافت مجدد از بخش 67 درصد یاد شده است. به این ترتیب که در بخش خروجی اگزوز هر توربین گاز با نصب دریچه های کنترل شونده گاز داغ فوق را به قسمت دیگ بخار هدایت تا آب موجود در آن به بخار سوپر هیت(بخار خیلی داغ و خشک) با درجه حرارت حدود 530 درجه سانتیگراد تبدیل و به همراه بخار خروجی از بویلر دوم جهت استفاده در توربین بخار به کار گرفته شود.
    به این ترتیب در بخش دیگ بخار چون از مشعل و سوخت جهت گرمایش صرفه جویی می شود راندمان در کل افزایش یافته و به رقمی معادل 55 در صد می رسد. (نزدیک به 25 درصد از 67 درصد تلفات فوق الذکر بازیافت و بدون نیاز به سوخت اضافی تبدیل به انرژی الکتریکی می شود. )




    این بخار پس از انجام کار در توربین بخار افت درجه حرارت پیدا کرده و دمای آن به رقمی حدود 60 درجه سانتیگراد می رسد و در اینجا به منظور استفاده مجدد از آن بخار فوق توسط سیستم خنک کن ( در نیرو گاه کرمان به کمک فنر های پرقدرت) سرد و تبدیل به آب شده و جهت استفاده مجدد پس از انجام عملیات تصفیه بین راهی وارد تانک تغذیه می گردد تا دوباره وارد دیگ بخار گشته و تبدیل به بخار سوپر هیت شود.
    این چرخه را سیکل ترکیبی گویند که نیرو گاه کرمان یکی از نیرو گاه های فوق الذکر در سطح کشور محسوب می شود.


    آب مورد نیاز این نیرو گاه از طریق سه حلقه چاه حفر شده در دشت جو پار تامین و به کمک خط لوله به استخر آب خام نیرو گاه به ظرفیت 3000 متر مکعب وارد و ذخیره شده تا پس از انجام عملیات تصفیه مورد استفاده بویلر های نیرو گاه قرار گیرد.
    ظرفیت آبدهی چاه های مذکور 80 لیتر در ثانیه است

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  11. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  12. #7
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نگهداري درست و مناسب از يك سيستم ، عامل مؤثري است در افزايش عمر آن و اثر به سزائي در گرفتن بهره اقتصادي تر از آن دارد. عمده موارديكه در بهره برداري صحيح پرسه دخيل مي باشند عبارتند از ، اشراف كامل و آگاهي وافر بر اصول و نحوه عملكرد سيستم و چگونگي كار با آن ، نظارت دقيق و بي وقفه بر عملكرد آن ، پيش بيني زمان لازم براي سرويس و تعويض قطعاتي كه مدت زمان كاركرد آنها محدود بوده و در صورت عدم تعويض آن قطعات يا سرويس بموقع دستگاهها ، آسيبهاي جبران ناپذيري ممكن است بر پيكره سيستم وارد آيد و نهايتاً رعايت نظمي وسواس گونه و كاري دلسوزانه در جهت حفظ سرمايه هاي مملكت اسلامي و مردم مسلمان.

    چه بسا بزرگترين صدمه هاي احتمالي ناشي از عدم آگاهي از نحوه كار دستگاهها و يا ناديده گرفتن اصوليكه لازمه عملكرد صحيح آن هستند ،‌ ميباشند. شخص بهره بردار بايست اطلاع كافي از چگونگي كار سيستم داشته باشد و تك تك پارامترهاي آن را زير نظر داشته باشد و در موقع مقرر به قسمتهاي مربوطه سركشي نمايد و در صورت بروز اشكال سريعاً آن قسمت را از سرويس خارج نمايد تا علت ايجاد عيب مشخص و از آسيب بيشتر جلوگيري شود. امروزه در راستاي بهره برداري مؤثر از نيروگاهها اكثر پارامترهاي اصلي توسط ميكروپروسور كنترل مي شوند و كمك شاياني به مسئولين مي نمايد تا بتوانند شرائط مطلوبتري براي كار نيروگاهها فراهم آورند.



    مروري بر سيكلهاي اصلي واحد توليد بخار

    اساس كار نيروگاههاي بخار بدين ترتيب است كه بخار توليد شده در ديگ بخار به طرف توربين هدايت ،‌ و پس از به دوران آوردن محور توربين به داخل كندانسوز كشيده شده و توسط آب خشك كن تقطير و به صورت آب مقطر در مي آيد. در اثر چرخش محور ژنراتور كه به محور توربين متصل است ، در سيم پيچهاي استاتور ژنراتور الكتريسته القاء و از آن جريان كشيده مي شود.

    سيكل ترموديناميكي آب و بخار

    ديگ بخار نيروگاهها از يك سري لوله ديواره اي تشكيل شده كه مجموعاً بصورت يك مكعب مستطيل مي باشند. سوخت و هوا از طريق جند مشعل به اين محوطه وارد و با مشتعل شدن سوخت ،‌آب داخل لوله هاي ديواره اي گرم و به بخار تبديل مي شود ،‌ بخار حاصله پس از عبور از لوله هاي سوپرهيتر كه در محوطه ديگ و در معرض حرارت قرار دارد به صورت بخار اشباع و فوق اشباع در آمده و به طرف توربين جهت انجام كار (چرخش محور توربين) هدايت مي شود.
    بخاريكه انرژي خود را روي پره هاي توربين از دست داده است و به آن بخار مرحه گويند ،‌از آخرين قسمت توربين خارج و به داخل كندانسوز كشيده مي شود ، اين بخار به واسطه برخورد با لوله هاي سرد شده توسط آب خشك كن تقطير مي شود و در محفظه اي به نام چاهك داغ و جمع و از آنجا توسط پمپ تغذيه به ديگ بخار برگردانده مي شود اين حلقه تشكيل يك سيكل بسته را مي دهد.

    در توربين هاي بزرگ اگر اجازه بدهيم بخار تا انتهاي توربين انيساط پيدا كند ،‌ در طبقات آخر توربين قطرات آب ظاهر مي گردد. براي جلوگيري از اين عمل بخار پس از عبور از قسمت فشار قوي توربين دوباره به ديگ بخار برگردانده مي شود و در لوله هاي ري هيت درجه حرارت آن به مقدار قبل مي رسد و سپس وارد قسمتهاي فشار متوسط و فشار ضعيف توربين مي گردد.

    در نيروگاههاي بزرگ بخار براي بالا بردن راندمان حرارتي از حرارت دود خروجي استفاده برده مي شود به اين صورت كه آب در بدو ورود به ديگ بخار وارد لوله هاي اكونومايزر مي شود كه اين لوله ها در مسير دود خروجي قرار دارند و حرارت دود را جذب مي نمايند. اين كار باعث صرفه جويي در مصرف سوحت و جلوگيري از ورود آب سرد به ديگ بخار مي گردد.
    به منظور رساندن درجه حرارت آب تغذيه به حد مطلوب براي ورود به بويلر ،‌ بخار از محلهاي بخصوصي از توربين ،‌ زيركش شده و به هيترهاي آب تغذيه فرستاده مي شود. اين عمل سبب گرم شدن آب تغذيه مي گردد. اگر هيتر قبل از پمپ تغذيه قرار گرفته باشد هيتر فشار ضعيف و اگر پس از پمپ باشد هيتر فشار قوي گويند. معمولاً وقتي جند هيتر در مسير آب قرار ميگيرد مقداري افت فشار در مسير اصلي بوجود مي آيد و بدين جهت وجود پمپ بعد از كندانسوز يا قبل از هيترهاي فشار ضعيف لازم مي باشد اين پمپ كه كندانسه پمپ ناميده مي شود آب تغذيه را از كندانسوز گرفته و به طرف پمپ تغذيه اصلي مي فرستد. كندانسه پمپ مي تواند داراي دو مرحله باشد يكي پس از كندانسوز و ديگري در بين هيترهاي فشار ضعيف يا بعد از آنها.

    وجود هوا و اكسيژن در آب باعث خوردگي در مسير لوله هاي آب ميگردد و اين گازها بايد قبل از رسيدن به ديگ بخار خارج گردد. گاززدائي توسط دياراتور يا دي گازر انجام مي شود ،‌علاوه بر اين دياراتور وظيفه تانك ذخيره پمپهاي تغذيه را نيز به عهده دارد كه چون اين پمپها از اهميت زيادي برخوردارند براي جلوگيري از آسيب رسيدن به آنها و ايجاد فشار مكش مورد نياز دياراتور در ارتفاع بالاتري قرار داده مي شود.

    در برخي از نيروگاهها به لحاظ مسائل تكنولوژيكي آنها از يك مسير باي پاس براي توربين استفاده مي گردد. سيستم باي پاس فشار قوي لوله اصلي بخار را قبل از توربين فشار قوي به لوله ري هيت سرد (خروجي از توربين HP) متصل مي نمايد. اين سيستم كه داراي يك شيرفشارشكن همراه با اسپري آب مي باشد ،‌فشار و – درجه حرارت بخار اصلي را به شرائط بعد از توربين HP مي رساند. در مواردي مانند راه اندازي يا در مواقعي كه اشكالي براي توربين بوجود آيد و نمي توان بخار را وارد توربين كرد از اين مسير باي پاس استفاده شده و بخار به توربين فشار قوي وارد نمي گردد. پس از عبور بخار از ريهيت دوباره توسط يك لوله باي پاس ديگر كه فشار ضعيف مي باشد بدون آنكه وارد توربين IP و LP شود به كندانسوز فرستاده مي شود. در برخي ديگر از نيروگاهها مسير باي پاس مستقيماً به كندانسوز مي رود.

    علاوه بر آنكه آب ورودي به ديگ بخار تصفيه شيميائي مي شود در اغلب مواقع در مسير سيكل نيز سيستم تصفيه كمكي ديگري در نظر گرفته مي شود. اين سيستم پاليشينگ پلنت ناميده مي شود كه البته با ساختار تصفيه خانه اصلي تا اندازه اي متفاوت مي باشد.


    سيكل ترموديناميكي آب و بخار در بويلرهاي بدون درام

    در بويلرهاي يك طرفه يا بدون درام آب پس از گذشت از اكونومايزر و دريافت حرارت دود خروجي وارد قسمت اواپراسيون يا لوله هاي ديواره اي شده و انرژي حرارتي را توسط شعله دريافت مي كند و پس از تبديل به بخار به قسمت سوپرهيترها هدايت مي شود.
    در ابتداي راه اندازي بويلر كه درجه حرارت پائين است و در قسمت آخر لوله هاي ديواره اي مخلوط آب و بخار وجود دارد وجود يك جدا كننده آب و بخار و يا مسيري براي گردش مجدد لازم مي باشد. در بعضي سيستم هاي مخلوط آب و بخار وارد سپريتور يا جدا كننده ها شده و بخار آن وارد سوپرهيترها و آب وارد تانك ذخيره و سپس وارد سيكل آب مي شود. در بعضي سيستم هاي ديگر آب توسط پمپ گردش دهنده آب دوباره به قسمت اواپراتور هدايت مي شود اين عمل تا بالا رفتن درجـه حرارت و فشار ادامه پيدا مي كند و وقتي شرائط به وضعيت كار عادي رسيد اين سيستم ها از مدار خارج شده و بخار مستقيماً وارد سوپرهيترها مي گردد و پس از كنترل درجه حرارت وارد توربين مي گردد.


    سيكل ترموديناميكي آب و بخار در بويلر درام دار.

    درام دو وظيفه اصلي به عهده دارد يكي عمل نمودن به عنوان يك نانك ذخيره و ديگري تقسيم آب و بخار. آب خروجي از اكونومايزر وارد درام مي شود ، در بويلرهاي فشار پائين در اثر اختلاف دانسيته آب و بخار ، آب توسط لوله هاي پائين آورنده به زير بويلر هدايت مي شود و در بويلرهاي فشار قوي توسط پمپ گردش دهنده آب به زير بويلر هدايت شده و وارد لوله هاي ديواره اي مي شود. در اين بخش قسمت اعظم انرژي حرارتي را توسط مشعله دريافت كرده و دوباره وارد درام مي شود. در درام كار تقسيم آب و بخار انجام شده و بخار به قسمت سوپرهيترها هدايت مي شود و آب باقيمانده دوباره توسط پمپ به گردش در مي آيد.

    سيكل سوخت

    سيستم سوخت رساني ديگهاي بخار به نحوي طراحي شده كه در اكثر موارد مي توان از مازوت و گاز طبيعي به عنوان سوخت اصلي ديگ استفاده نمود و گازوئيل را به عنوان سوخت راه انداز مورد استفاده قرار داد. ذكر اين نكته ضروريست كه مسيرهاي سوخت رساني نيروگاهها با يكديگر يكسان نبوده و وجوه متمايز زيادي دارند ولي اساس كار آنها يكسان بوده و تجهيزات اصلي كه در هر مسير به كار رفته اند تقريباً با يكديگر مشابهت دارند.

    سوخت مايع معمولاً بوسيله تانكر نفتكش و يا در بعضي موارد بوسيله خط لوله به نيروگاه منتقل مي شود.

    براي ذخيره سوخت مايع دو روش معمول است :


    الف) سوخت مستقيماً از تانكر به طرف تانك ذخيره پمپ شده و در آنجا جمع آوري مي شود.

    ب) ابتدا سوخت به يك مخزن زيرزميني هدايت شده و سپس از آنجا به طرف تانك ذخيره پمپ مي شود و به سمت تانك مصرف روزانه هدايت ميگردد.

    در خروجي تانك مصرف روزانه معمولاً دو عدد ***** و دو عدد پمپ به صورت موازي نصب مي شوند تا يكي به صورت رزرو عمل نموده و ديگري در حال كار باشد اين دو پمپ به پمپهاي اصلي سوخت معروف هستند و عمدتاً از نوع پيچي مي باشند. با توجه به چسبندگي زياد مازوت در دماي محيط ، لازم است درجه حرارت آن را به ميزان مشخصي افزايش داده و در آن درجه حرارت ثابت نگه داشته شود تا جريان يافتن آن امكان پذير باشد (اين عمل در مناطق سردسير ممكن است براي گازوئيل نيز انجام شود).

    سوخت پس از خروج از پمپ وارد هدر ورودي گرمكن بخاري ميگردد. روي اين هدر يك مسير برگشت به تانك وجود دارد كه در مسير راه آن يك شير كنترل فشار قرار داده شده است. اين شيركنترل فشار همواره سعي مي نمايد فشار خط را ثابت نگه دارد به اين ترتيب كه چنانچه فشار از حد معيني زيادتر شده اين شير مسير برگشت سوخت را باز مي نمايد و سوخت را به طرف تانك هدايت ميكند. سوخت پس از ترك هدر ، وارد گرمكن بخاري مي گردد. درجه حرارت سوخت در خروجي گرمكن مازوت به مقدار تعيين شده مي رسد. ميزان دقيق اين درجه حرارت به غلظت سوخت و ساختمان مشعل بستگي دارد و لذا مقدار آن در نيروگاههاي مختلف با يكديگر متفاوت است.
    پس ازگرم شدن و عبور از *****ها سوخت وارد شير كنترل دربي مي شود وظيفه اين شير، كنترل مقدار سوخت ورودي به بويلر بر اساس بار بويلر است. پس از اين شير هدر كليه مشعلها قرار دارد اين هدر به نحوي طراحي شده است كه سوخت مي تواند بدون وارد شدن در مشعلها در كليه طبقات بويلر كه مشعلها در آن قرار دارند به جريان در آمده و سپس از طريق مسير ري سيركوله به تانك هدايت گردد. در سر راه برگشت سوخت (از هدر مشعلها به تانك) يك شير ساده قطع و وصل وجود دارد تا به كمك آن بتوان سوخت را به تانك برگشت داده و يا در بويلر مصرف نمود البته در بعضي از مسيرهاي سوخت رساني به جاي اين شير قطع و وصل شيركنترل كننده اصلي دربي سوخت قرار گرفته و به اين ترتيب فشار هدر سوخت و همچنين دبي آن كنترل مي گردد.

    پس از آنكه پارامترهاي مختلف سوخت كنترل گرديدند سوخت به هدر مشعلها هدايت ميگردد در سر راه هر مشعل يك شير دستي قطع و وصل كه به صورت اتوماتيك و يا گرفتن فرمان از اطاق فرمان عمل مي نمايد قرار داشته كه جريان سوخت را به طرف مشعل هدايت نموده و يا آنرا قطع مي نمايد.

    سوخت گاز نيروگاه توسط خط لوله گاز كه معمولاً از خط لوله سراسري گاز منشعب مي شود تاًمين مي گردد. قبل از تحويل گاز به نيروگاه معمولاً يك ايستگاه تقليل فشار گاز وجود دارد كه فشار گاز را به حد معيني تقليل مي دهد. گاز پس از عبور از اين ايستگاه وارد خط گار داخلي نيروگاه ميشود. طبيعي است براي مصرف اين گاز در بويلر لازم است فشار آن باز هم افت نمايد. بنابراين گاز بار ديگر وارد ايستگاه تقليل فشار كه در داخل محوطه نيروگاه و معمولاً در نزديگي واحد قرار داده شده ،‌ميشود و فشار آن به ميزان قابل توجهي افت نموده و بدين ترتيب جهت اشتعال در بويلر آماده ميشود. ميزان افت فشار در اين ايستگاه بستگي به طول مسير (بين ايستگاه گاز و مشعلها) و همچنين ساختمان مشعلهاي گاز سوز دارد. اين ايستگاه داراي دو يا سه خط موازي بوده كه هميشه يك خط به صورت رزرو بوده و دو خط ديگر در سرويس هستند.

    پس از ايستگاه افت فشار يك اريفيس دبي گاز را اندازه گيري مي نمايد و يك شير قطع كننده وظيفه كنترل فشار خط و قطع جريان گاز در مواقعي كه فشار خط از حد تعيين شده بيشتر يا كمترشود را به عهده دارد
    شير اصلي كنتر دبي گاز پس از اين شير قرار داده شده است ،‌اين شير مقدار گازي را كه لازم است براي سوخت مصرف شود را با توجه به بار بويلر به طرف مشعلها هدايت مي نمايد. پس از اين شير ، گاز به طرف هدر مشعل ها هدايت ميگردد. قبل از هر مشعل علاوه بر يك والودستي دو عدد شير قطع كننده وجود دارند كه براي بهره برداري از مشعلها با هم باز شده و در زمان خاموش شدن مشعلها با هم بسته شده و جريان گاز بداخل كوره را متوقف مي سازد. نصب دو عدد شير مشابه هم در كنار يكديگر فقط به لحاظ رعايت ايمني بيشتر مي باشد. بين اين دو شير يك شير تخليه ديگر وجود دارد كه نحوه كار آن برعكس اين دو شير بوده و در زمان بسته بودن آنها از نشتي گاز به محوطه احتراق جلوگيري مي نمايد.

    مروري بر سيكلهاي اصلي واحد توليد بخار



    سيكل هوا و دود

    هواي محيط توسط فنهاي اصلي مكيده شده ،‌وارد گرمكنهاي بخاري مي گردد. در داخل گرمكنها حرارت لازم را كسب نموده و سپس از ژنگستورم عبور داده مي شود. پس از آن هواي مشعلها از دريچه هاي كنترل گذشته و در عمل احتراق شركت مي جود. دود حاصل از احتراق كوره را ترك نموده ،‌ قسمتي از آن توسط فن گردش دهنده مجدداً وارد كوره مي گردد و بقيه آن وارد ژونگستروم مي گردد. صفحات فلزي ژونگستروم حرارت خود را از دود عبوري دريافت نموده و در نيمه دوم چرخش اين حرارت را به هوا منتقل مي سازد. دود خروجي پس از طي دو كانال از طريق دودكش به محيط بيرون فرستاده مي شود.
    لازم به ذكر است در كوره هائي كه تحت خلاء‌ كار مي كنند دود توسط يك فن مكيده شده و به طرف دودكش روانه مي گردد.


    منبع

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  13. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  14. #8
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

    سيكل كاري و اجزاء اصلي يك نيروگاه حرارتي



    مشخصات فنی نیروگاه

    سوخت

    سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری می‌شود.

    آب

    آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

    سیستم خنک کن

    برج خنک کن نیروگاه از نوع تر می‌باشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر 5.2 متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد می‌باشد.

    سیستم تصفیه آب

    سیستم تصفیه آب جهت برج خنک کن

    آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لوله‌های کندانسور رسوب می‌کنند (از قبیل بی‌کربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته می‌شود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل می‌شوند. به این آب که بدون سختی بی کربنات باشد، آب نرم می‌گویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده می‌شود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.

    سیستم تصفیه آب جهت تولید بخار

    چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده می‌شود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه ***** شنی می‌شود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف ***** کربنی فعال فرستاده می‌شود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این ***** یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه می‌دارد.

    سپس این آب وارد دو دستگاه ***** 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون می‌باشند، توسط این *****ها جذب و وارد دو دستگاه ریورس اسمز می‌گردد. در این دستگاه 90% املاح محلول در آب گرفته می‌شود. آب پس از این مرحله وارد مخزن زیرزمینی می‌گردد. سپس توسط سه پمپ به *****های کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار می‌گیرد.

    بویلر

    بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار می‌باشد. درام بالایی معمولا به وزن 110 تن در ارتفاع 50.6 متری و ضخامت جداره 11 سانتیمتر می‌باشد. بویلر دارای 16 مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفته‌اند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار می‌رود.

    توربین

    نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف می‌باشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی 8 طبقه و توربین فشار متوسط 5 طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای 5 طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر می‌گردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور می‌رود.

    کندانسور

    کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا می‌باشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده می‌شود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام می‌یابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین می‌گردد که این پمپها فشار داخل کندانسور را کاهش می‌دهند.

    ژنراتور

    ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت 45 کیلوولت آمپر می‌باشد و جریان تحریک اکسایتر پیلوت در لحظه Flashing از طریق باطری خانه تامین می‌شود. ضمنا سیم پیچهای دستگاه توسط هوا خنک کاری می‌شوند.

    ترانسفورمرها و تغذیه داخلی نیروگاه

    ترانس اصلی (Main Ttansformer):این ترانس به صورت سه تک فاز با ظرفیت هر کدام 150 مگا ولت آمپر و فرکانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجی ژنراتور از 20 کیلو ولت تا 230 کیلو ولت بکار رفته است. در ضمن نسبت تبدیل ، 10.20%±247 کیلو ولت می‌باشد.

    ترانس واحد (Unit Transformer):این ترانس با ظرفیت 35/22/22 مگا ولت آمپر و نسبت تبدیل 3/316/516%±20 و فرکانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 کیلو ولت خروجی ژنراتور را تبدیل به 6 کیلو ولت نموده و به منظور تامین مصارف داخلی نیروگاه در حین بهره برداری بکار می‌رود.

    ترانس استارتینگ (Start up Trans): این ترانس به تعداد دو عدد ، به نامهای LTB و LTA و با ظرفیت 25/25/25 مگا ولت آمپر و نسبت تبدیل 10%±3/6/10%± کیلو ولت و فرکانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 کیلو ولت شبکه را تبدیل به 6 کیلو ولت نموده و شینه‌ها را طبق شکل شماتیک ضمیمه تغذیه می‌نماید.

    ترانس تغذیه (Auxiliary Trans): ترانس تغذیه در ظرفیتهای مختلف 630/1600/2500 کیلو ولت آمپر ، ولتاژ 6 کیلو ولت را تبدیل به 400 ولت می‌نماید که جهت تامین مصارف داخلی فشار ضعیف بکار می‌رود.

    سیستم آتش نشانی

    آب: کلیه قسمتهای نیروگاه (ساختمان شیمی ، ماشین خانه ، بویلر ، کارگاه ، انبار و ...) و محوطه مجهز به سیستم آب آتش نشانی می‌باشند.

    فوم: کلیه قسمتهای سوخت رسانی اعم از مخازن سوخت سبک و سنگین و ایستگاه تخلیه سوخت ، بویلر دیزل اضطراری و بویلر کمکی مجهز به سیستم فوم می‌باشند.

    گاز CO2: کلیه سیستمهای الکتریکی از قبیل ساختمان الکتریکی و... توسط گاز CO2 حفاظت می‌گرد.

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  15. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  16. #9
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    مدارهاي كنترل سيستم هاي نيروگاه
    بنا بر تعريف سيستم هاي كنترل از اجزائي تشكيل شده اند كه در ارتباط با يكديگر كار خاصي را در جهت هدفي معين انجام مي دهند. بنابراين يك واحد نيروگاهي به عنوان يك سيستم تبديل و توليد انرژي داراي مشخصه هاي فوق مي باشد. هدف ار كار نيروگاه تبديل انرژي شيميائي موجود در سوخت به انرژي الكتريكي مورد نياز جامعه است و در اين رابطه ورودي اصلي نيروگاه سوخت و ميزان انرژي الكتريكي توليدي خروجي آن ميباشند. ارتباط بين ورودي و خروجي را كار يك نيروگاه گويند.اجزاء اصلي نيروگاه عبارتند از بويلر ،‌ توربين و ژنراتور.




    نمايي از نيروگاه توس مشهد مقدس



    كنترل بويلر - كنترل احتراق - كنترل آب تغذيه - كنترل درجه حرارت - كنترل توربين


    كنترل بويلر

    منظور از كنترل بويلر تنظيم شرائط بخار خروحي بويلر از نظر دبي ، فشار و درجه حرارت ميباشد. وروديهاي بويلر به طور كلي عبارتند از سوخت ،‌هوا و آب تغذيه كه با توجه به اين وروديها عمده خروجي بويلر درجه حرارت بخار سوپرهيت مي باشد.

    كنترل احتراق

    سيگنال اصلي كنترل بويلر (بويلر مستر) بر سه پارامتر مهم بايستي تاًثير داشته باشد كه عبارتند از سوخت هوا و آب ، و تقدم تاُخر اثر آنها با اهميت مي باشد مثلاً قبل از ورود سوخت ،‌ بايستي هوا به بويلر وارد شده باشد و براي كم كردن بار واحد ابتدا سوخت كم مي شود و سپس هوا ،‌ اين عمل توسط سيستم محدود كننده ضربدري - Cross limit انجام مي شود و سيگنالهاي خروجي اين سيستم به عنوان نقطه تنظيم Set point حلقه كنترل سوخت و هوا استفاده مي شود.

    براي كنترل سوخت مي توان از مدار روبرو استفاده كرد. اين سيستم بسيار گران و غير اقتصادي است و از آن استفاده چنداني نمي شود زيرا فشار سوخت را نمي توانيم زياد بالا ببريم لذاست كه سوخت را در يك حلقه به گردش درآورده و علاوه بر كنترل فشار (توسط شيركنترل در مسير برگشت سوخت).

    اثر اصطكاك استاتيكي مايع سوخت را خنثي نموده و سوخت مي تواند بدون تاًخير در موقع نياز وارده مشعل شود.
    در بعضي موارد سوخت را قبل از گرمكن به مسير برگشت هدايت نموده تا سوختي كه مصرف نميشود گرم نشده و در انرژي صرفه جوئي شود. شكل مدار اين مسير بشكل روبرو مي باشد. كنترل سوخت برگشتي توسط كنترل والو مربوطه صورت مي گيرد كه فرمان اين شير يا از فشار بعد از هيتر صادر مي شود و يا از موقعيت والو اصلي مسير برگشت.

    در استفاده از سوخت گازي بخاطر حجم زياد سوخت معمولاً در مسير برگشت از دو كنترل والو به صورت موازي استفاده مي شود.
    براي كنترل هوا معمولاً چند مشعل تواماً كنترل مي شوند و كنتر موردي وجود دارد كه تمام مشعلها يك جا كنترل شوند.
    البته كنترل تك تك مشعلها حالت خوبي به نظر مي رسد ولي بخاطر مسائل تكنولوژيكي مقرون به صرفه نمي باشد. به جهت اينكه فشار هوا قبل از مشعلها بايستي ثابت باشد (بدون توجه به تعداد آنها) لذا فشار هدر اندازه گيري شده و فرمان لازم را براي دمپرهاي پس از فنها ارسال مي دارد.

    كنترل آب تغذيه

    هدف از كنترل آب تغذيه تنظيم دبي آب تغذيه بگونه اي مي باشد كه سطح آب درام در تمام شرائط در يك حد مشخصي باقي بماند. يكي از روشها اين است كه فشار درام را اندازه گيري كرده با ست پوينت مقايسه شده و به كنترل والو سرعت پمپ (كوپلينگ هيدروليكي) اعمال شود. از طرفي چون عمل اين كوپلينگ كند است از يك حلقه كنترل سريع در داخل يك حلقه كنترل كند استفاده
    ميشود. در وهله اول كه احتياج به دبي آب كم داريم كنترل روي والو انجام مي گيرد و اگر دبي زياد نياز باشد كنترل روي دور پمپ انجام مي شود. براي كنترل بهتر از دو والو موازي استفاده مي شود كه براي درصدي از بار از والو رنج پائين و براي بقيه بار از والو رنج بالا استفاده مي شود. به علت حساسيت و خطاهاي اندازه گيري ،‌سيستم كنترل آب تغذيه را پيچيده ترين حلقه هاي كنترل مي باشد كه معمولاً
    از مدار كنترل سه عنصري (سطح درام ،‌ فلوي بخار ، فلوي آب تغذيه)‌ استفاده ميشود.

    كنترل درجه حرارت

    درجه حرارت بخار خروجي از بلويلر بايستي ثابت باشد شكل عمده ،‌تاًخير موجود در سيستم است. براي اينكه اين تاًخير را كم كنيم درجه حرارت قبل از سوپرهيتر اندازه گيري مي شود تا تغيير در
    درجه حرارت خروجي زودتر حدس زده شود چون امكان دارد بخار هنگام عبور از لوله هاي سوپرهيتر با دماي متفاوت خارج گردد لذا از دو طرف سوپرهيت اندازه گيري درجه حرارت انجام مي شود. چون ممكن است كه آب اسپري نتواند درجه حرارت را كنترل كند از سيستم هاي كمكي استفاده مي شود اين سيستم ها عبارتند از G.R.FAN و تغيير زاويه مشعلها كه فقط در بويلرهائي كه مشعلها در گوشه هاي بويلر قرار دارند استفاده مي شود و با تغيير زاويه مشعلها انرژي تشعشعي تغيير داده مي شود.

    كنترل توربين

    خروجي كنترل شونده در يك توربين دور آن بوده و ورودي كنترل كننده ميزان دبي بخار ورودي با كيفيت ثابت (درجه حرارت ،‌چگالي ،‌ …) مي باشد. مكانيزم كنترل توربين هيدروليكي است كه روغن آن توسط پمپ تاًمين مي شود. سيستم هاي هيدروليكي مينيمم گير هستند يعني آن سيستم كنترل كه كمترين فشار روغن كنترل را داشته باشد در كنترل گاورنينگ والوها دخالت مي كند.
    فرمان والو ورودي توربين از حلقه كنترل هيدروليك صادر مي شود. حلقه كنترل توربين مطابق شكل زير مي باشد. از عوامل مؤثر روي حلقه كنترل فشار قبل از والو مي باشد تا در اثر زياد باز شدن والو افت فشار بيش از حد ايجاد نگردد. سرعت و شتاب توربين بسيار مهم هستند و در حلقه كنترل مؤثر مي باشند (حلقه هاي كنترل سرعت و شتاب). فشار كندانسوز براي توربين محدوديت ايجاد مي كند و در كار آن مؤثر است (حلقه كنترل فشار كندانسوز) كنترل بار از عوامل مهم و مؤثر در كار توربين است. درجه حرارت طبقات آخر توربين LP بخصوص موقعي كه توربين بي بار كار ميكند بسيار بالا مي رود و حتي احتمال ذوب شدن آنها مي رود و بايستي بوسيله سيستم كنترلي بتوان با پاشيدن آب آن را خنك كرد.

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  17. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


  18. #10
    کـــــــاربر فــــعال
    رشته تحصیلی
    مکانیک سیالات
    نوشته ها
    11,179
    ارسال تشکر
    13,156
    دریافت تشکر: 21,945
    قدرت امتیاز دهی
    56319
    Array
    ریپورتر's: خوشحال2

    پیش فرض پاسخ : انواع و نحوه عملکرد نیروگاه ها (منبع :http://www.noandishaan.com)

    آنالیز فنی یك نیروگاه حرارتی

    نویسنده: مسعود شاعف
    برای درك هرچه بهتر چرخه های ترمودینامیكی یك نیروگاه نسبتا بزرگ را آنالیز كرده تا مطالبی را كه درمقالات دیگر سایت خوانده اید را بهتر فهمیده و آنرا درك نمایید. مقاله زیر كه قسمت اعظم آن از سایت رشد گرفته شده این موضوع را دنبال می كند .
    نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.


    مشخصات فنی نیروگاه
    سوخت
    سوخت اصلی نیروگاه ، سوخت سنگین (مازوت) می‌باشد که توسط تانکرها حمل و از طریق ایستگاه تخلیه سوخت در سه مخزن 33000 متر مکعبی ذخیره می‌گردد. سوخت راه اندازی ، سوخت سبک (گازوئیل) است که در یک مخزن 430 متر مکعبی نگهداری می‌شود.

    آب
    آب مصرفی نیروگاه ، جهت تولید بخار و مصرف برج خنک کن و سیستم آتش نشانی ، از طریق چاه عمیق تامین می‌گردد.

    سیستم خنک کن
    برج خنک کن نیروگاه از نوع تر می‌باشد و 18 عدد فن (خنک کن) دارد که هر یک دارای الکتروموتوری به قدرت 132kw و سرعت سرعت 141RPM می‌باشد و بوسیله دو عدد پمپ توسط لوله‌ای به قطر 5.2 متر آب مورد نیاز خنک کن تامین می‌گردد. دمای آب برگشتی در برج خنک کن 29.6 درجه سانتیگراد و دمای آب خروجی از برج 21.6 درجه سانتیگراد می‌باشد.

    سیستم تصفیه آب
    سیستم تصفیه آب جهت برج خنک کن
    آب لازم جهت برج خنک کن بایستی فاقد املاحی باشد که سریعا در لوله‌های کندانسور رسوب می‌کنند (از قبیل بی‌کربناتها). این املاح با افزودن کلرورفریک ، آب آهک و آلومینات سدیم گرفته می‌شود و سپس رسوبات جمع شده توسط یک جاروب جمع کننده به بیرون منتقل می‌شوند. به این آب که بدون سختی بی کربنات باشد، آب نرم می‌گویند. آب نرم وارد دو استخر ذخیره شده و از آنجا توسط پمپهایی جهت تامین کمبود آب به برج خنک کن فرستاده می‌شود. برای از بین بردن خزه و جلبک در این استخر ، سیستم تزریق کلر طراحی شده است.

    سیستم تصفیه آب جهت تولید بخار
    چون آب مورد نیاز برای تولید بخار و جبران کمبود سیکل آب و بخار بایستی کیفیت بسیار بالایی داشته باشد، لذا برای این منظور از یک سیستم مشترک برای هر دو واحد استفاده می‌شود. بعد از اینکه مقداری از سختی آب گرفته شد، وارد سه دستگاه ***** شنی می‌شود، سپس به مخزن ذخیره وارد و از آنجا توسط سه عدد پمپ به طرف ***** کربنی فعال فرستاده می‌شود، تا کلر موجود در آب بوسیله زغال فعال جذب شود. بعد از این ***** یک مبدل حرارتی در نظر گرفته شده که دمای آب را در 25 درجه سانتیگراد ثابت نگه می‌دارد.

    سپس این آب وارد دو دستگاه ***** 5 میکرونی شده و ذراتی که قطر آنها بیشتر از 5 میکرون می‌باشند، توسط این *****ها جذب و وارد دو دستگاه ریورس اسمز می‌گردد. در این دستگاه 90% املاح محلول در آب گرفته می‌شود. آب پس از این مرحله وارد مخزن زیرزمینی می‌گردد. سپس توسط سه پمپ به *****های کاتیونی و آنیونی وارد شده و پس از تنظیم PH و کنترل از نظر شیمیایی به مخازن ذخیره آب وارد و مورد استفاده قرار می‌گیرد.
    بویلر
    بویلر نیروگاه دارای درام بالائی و پائینی بوده و به صورت گردش اجباری توسط سه عدد پمپ سیرکوله (Boiler Circulation Watepump) و کوره ، تحت فشار می‌باشد. درام بالایی معمولا به وزن 110 تن در ارتفاع 50.6 متری و ضخامت جداره 11 سانتیمتر می‌باشد. بویلر دارای 16 مشعل هست که در چهار طبقه و در چهار گوشه با زاویه ثابت قرار گرفته‌اند. مشعلهای ردیف پائین برای هر دو سوخت مازوت و گازوئیل بکار می‌رود
    .
    توربین
    نیروگاه از نوع ترکیب متوالی در یک امتداد (Tadem Compound) و دارای سه سیلندر فشار قوی ، فشار متوسط و فشار ضعیف می‌باشد که توربین فشار قوی و فشار متوسط در یک پوسته قرار گرفته و در پوسته دیگر توربینهای فشار ضعیف قرار دارند. توربین فشار قوی 8 طبقه و توربین فشار متوسط 5 طبقه و توربین فشار ضعیف با دو جریان متقارن و هر یک دارای 5 طبقه است. بخار از طریق دو عدد شیر اصلی در دو طرف توربین و شش عدد شیر کنترل وارد توربین فشار قوی شده و بعد از انبساط در چندین طبقه از توربین به بویلر بر می‌گردد. سپس وارد توربین فشار متوسط شده و بعد از انبساط توسط یک لوله مشترک وارد توریبن فشار ضعیف گردیده و به طرف کندانسور می‌رود.

    کندانسور
    کندانسور نیروگاه از نوع سطحی یک عبوری با جعبه آب مجزا می‌باشد که در زیر توریبن فشار ضعیف قرار گرفته است. برای ایجاد خلا کندانسور از دو نوع سیستم استفاده می‌شود که سیستم اول در موقع راه اندازی و توسط یک مکنده هوا انجام می‌یابد. در طول بهره برداری خلا لازم توسط دو دستگاه پمپ تامین می‌گردد که این پمپها فشار داخل کندانسور را کاهش می‌دهند.

    ژنراتور
    ژنراتور طوری طراحی شده است که در مقابل اتصال کوتاه و نوسانات ناگهانی بار و احیانا انفجار هیدروژن در داخل ماشین مقاومت کافی داشته باشد. سیستم تحریک آن شامل یک اکساتیر پیلوت (Pilot exiter) با ظرفیت 45 کیلوولت آمپر می‌باشد و جریان تحریک اکسایتر پیلوت در لحظه Flashing از طریق باطری خانه تامین می‌شود. ضمنا سیم پیچهای دستگاه توسط هوا خنک کاری می‌شوند.

    ترانسفورمرها و تغذیه داخلی نیروگاه
    ترانس اصلی (Main Ttansformer):این ترانس به صورت سه تک فاز با ظرفیت هر کدام 150 مگا ولت آمپر و فرکانس 50 هرتز و امپرانس ولتاژ 14.2 درصد به عنوان Step Up Tranformer ، جهت بالا بردن ولتاژ خروجی ژنراتور از 20 کیلو ولت تا 230 کیلو ولت بکار رفته است. در ضمن نسبت تبدیل ، 10.20%±247 کیلو ولت می‌باشد.

    ترانس واحد (Unit Transformer):این ترانس با ظرفیت 35/22/22 مگا ولت آمپر و نسبت تبدیل 3/316/516%±20 و فرکانس 50 هرتز و امپدانس ولتاژ 8.5% و تپ چنجر Off- Loud ، ولتاژ 20 کیلو ولت خروجی ژنراتور را تبدیل به 6 کیلو ولت نموده و به منظور تامین مصارف داخلی نیروگاه در حین بهره برداری بکار می‌رود.
    ترانس استارتینگ (Start up Trans): این ترانس به تعداد دو عدد ، به نامهای LTB و LTA و با ظرفیت 25/25/25 مگا ولت آمپر و نسبت تبدیل 10%±3/6/10%± کیلو ولت و فرکانس 50 هرتز و امپدانس 10% و تپ چنجر On Lead ، ولتاژ 230 کیلو ولت شبکه را تبدیل به 6 کیلو ولت نموده و شینه‌ها را طبق شکل شماتیک ضمیمه تغذیه می‌نماید.
    ترانس تغذیه (Auxiliary Trans): ترانس تغذیه در ظرفیتهای مختلف 630/1600/2500 کیلو ولت آمپر ، ولتاژ 6 کیلو ولت را تبدیل به 400 ولت می‌نماید که جهت تامین مصارف داخلی فشار ضعیف بکار می‌رود.

    سیستم آتش نشانی
    آب: کلیه قسمتهای نیروگاه (ساختمان شیمی ، ماشین خانه ، بویلر ، کارگاه ، انبار و ...) و محوطه مجهز به سیستم آب آتش نشانی می‌باشند.
    فوم: کلیه قسمتهای سوخت رسانی اعم از مخازن سوخت سبک و سنگین و ایستگاه تخلیه سوخت ، بویلر دیزل اضطراری و بویلر کمکی مجهز به سیستم فوم می‌باشند.
    گاز CO2: کلیه سیستمهای الکتریکی از قبیل ساختمان الکتریکی و... توسط گاز CO2 حفاظت می‌گرد

    نا له پنداشت که در سینه ی ما جا تنگ است

    رفت و برگشت سراسیمه که دنیا
    تنگ است

  19. 2 کاربر از پست مفید ریپورتر سپاس کرده اند .


صفحه 1 از 8 12345678 آخرینآخرین

اطلاعات موضوع

کاربرانی که در حال مشاهده این موضوع هستند

در حال حاضر 1 کاربر در حال مشاهده این موضوع است. (0 کاربران و 1 مهمان ها)

موضوعات مشابه

  1. تاپیک متالورژی
    توسط ghasem motamedi در انجمن مهندسی مواد و متالورژي
    پاسخ ها: 41
    آخرين نوشته: 12th January 2014, 02:52 PM
  2. آموزشی: پاسخ : آفات و بيماري هاي گياهي
    توسط m0na در انجمن آفات گیاهی
    پاسخ ها: 5
    آخرين نوشته: 26th November 2010, 01:31 AM
  3. Singularity
    توسط PiXiE در انجمن نقد و بررسی بازی های کامپیوتری
    پاسخ ها: 0
    آخرين نوشته: 10th October 2010, 04:23 PM
  4. رابطه راهبرد سازمان با مدیریت کیفیت جامع
    توسط ریپورتر در انجمن سایر موضوعات مدیریت
    پاسخ ها: 0
    آخرين نوشته: 30th September 2010, 10:56 AM
  5. مقاله: نقد و بررسی کارت های کوادرو 5000 و 6000
    توسط آبجی در انجمن بخش مقالات سخت افزار
    پاسخ ها: 0
    آخرين نوشته: 11th August 2010, 11:14 PM

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •