دوست عزیز، به سایت علمی نخبگان جوان خوش آمدید

مشاهده این پیام به این معنی است که شما در سایت عضو نیستید، لطفا در صورت تمایل جهت عضویت در سایت علمی نخبگان جوان اینجا کلیک کنید.

توجه داشته باشید، در صورتی که عضو سایت نباشید نمی توانید از تمامی امکانات و خدمات سایت استفاده کنید.
نمایش نتایج: از شماره 1 تا 1 , از مجموع 1

موضوع: علم شناخت و استخراج فلزات.

  1. #1
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض علم شناخت و استخراج فلزات.


    این تعریف که ««متالوژی که از قدیمی‌ترین هنرها و یکی از جدیدترین علوم است»» ، بخوبی تاریخچه طولانی و جالب رشته متالوژی را بیان می‌کند. از زمانی که بشر فلز را شناخت، متالوژی را به‌عنوان یک هنر فرا گرفت. این علم ، فرآوری مواد معدنی از کانه‌های آنها (جداسازی از سنگ معدن) ، ذوب ، تصفیه و تولید شمش ، بهبود خواص و تهیه آلیاژها و فن کار بر روی فلزات و شکل دادن آنها را در بر می‌گیرد. صنعت متالوژی در جهان از دیرباز به‌عنوان صنعت مادر شناخته شده ، با پیشرفتهای روز افزون تکنولوژی ، نقش آن آشکارتر می‌گردد. شواهد باستان شناسی نشان می‌دهد که ساکنین فلات ایران ، جزو اولین اقوامی بوده‌اند که به کشف فلزات و استفاده از آن نائل گردیده‌اند. با در نظر گرفتن این سابقه دیرینه ، همچنین نقش روز افزون فلزات در زندگی بشر و وجود معادن غنی متعدد در کشورمان لازم است که دست‌اندرکاران متالوژی در شناسایی هر چه بیشتر این رشته کوشا بوده ، به طریقی سطح اطلاعات علمی و فنی سایرین را در این زمینه بالا ببرند.
    تاریخچه متالوژی
    دوره فلزات پس از عصر سنگ بوده ، از حدود 6 تا 7 هزار سال پیش از هجرت آغاز شده است. به نظر می‌رسد که مس اولین فلزی است که بطور خالص و طبیعی و جدا از مواد معدنی مورد استفاده بشر قرار گرفته است. با نگاهی به انوع سنگهای مس ، می‌بینیم که آنها کم و بیش از ظاهری فلزی با رنگهای الوان ، نظیر نیلی ، لاجوردی ، سبز ، طلایی و رخ برخوردار می‌باشند این امر می‌تواند یکی از علل عمده توجه بشر اولیه به ترکیبات حاوی مس باشد. از طرفی مس به‌صورت خالص در طبیعت یافت می‌شود و قابلیت شکل‌پذیری مناسبی دارد.
    برخی از پژوهشگران نیز معتقدند که اولین بار ذرات براق طلا که در کف رودخانه ها پراکنده بوده است، توسط بشر شناسایی شدند. مصریان و شاید هندیان بیش از سایر ملل در استخراج طلا از سنگهای آن توفیق داشته‌اند. در ایران نیز از دوره هخامنشی ، آثار متعددی از طلا و نقره خصوصا در کنار رود جیحون و در شهر همدان کشف شده است.
    با گذشت زمان ، قلع ، نقره ، سرب و آنیتموان (سنگ سرمه) نیز کشف شد. فلزکاران با استفاده از آتش ، سرخ کردن و سپس ذوب فلزات ، آمیختن آنها را تجربه کرده ، به شناخت تجربی آلیاژها توفیق یافتند. از اختلاط قلع و مس ، مفرغ پدید آمده ، عصر مفرغ آغاز شد. مفرغ از هنر زیبایی با مس ، طلا و نقره رقابت می‌کرد و سختی و دوامش از انها بیشتر بود و نیازهای بشر را نیز برای ساخت ابزارهای مختلف تامین می‌کرد، لذا بشر تا مدتها به فکر ساختن آلیاژ یا کشف فلز جدیدی نبود.
    بدرستی معلوم نیست که انسان نخستین بار چگونه و از کجا سنگ آهن را کشف و ذوب نمود و فلز آهن را بدست آورد، اما از شواهد امر پیداست که از 5000 سال پیش انسانهای نخستین آهن را بکار می‌گرفتند و تقریبا در نصف این مدت ، آهن بعنوان وسیله ای زینتی و فلزی افسانه‌ای از توجه خاصی برخوردار بوده است. مصریان قدیم به آهن ، با- ان- پتن یا فلز بهشتی می‌گفتند.
    به نظر می‌رسد که ابتدا شهاب‌های آسمانی که حاوی آهن و نیکل (15-6 درصد نیکل) بوده‌اند، توسط انسانهای نخستین بکار گرفته شده‌اند. اطلاق سنگ اسمانی و فلز ستارگان به آهن نیز موید همین است. آشوری‌ها ، بابلی‌ها ، کلدانی‌ها و عبری‌ها به‌علت گرانبها بودن آهن از آن در ساختن زیور آلات استفاده می‌کردند. در عهد حمورابی (2700 سال پیش از هجرت) ، بهای آهن هشت برابر نقره و معادل سه‌ربع بهای طلا بوده است.
    در ایران قدیم نیز در دوره هخامنشی به مرور مصالح آهنی جای مصالح مفرغی را گرفت، بطوری‌که در اواخر این دوره ، اسلحه‌های آهنی جایگزین اسلحه‌های مفرغی شدند. پیشینیان ، سنگ معدن آهن را با زغال چوب مخلوط کرده ، مشتعل می‌نمودند. در دوران باستان ، در ایران ، بین النهرین ، یونان و روم مجموعا هفت فلز شناخته و بکار برده شده‌اند که شامل مس ، طلا (زر) ، نقره (سیم) ، آهن ، سرب (آبار) ، اقلع (ارزیز) و جیوه (سیماب) و پلاتین می‌باشند.
    تولید فلزات در طول زمان
    از دوران باستان تاکنون مجموعا 87 فلز کشف شده است که به جز 7 فلز مذکور ، 2 فلز در قرون وسطی ، 15 فلز در قرن دوازدهم هجری ، 43 فلز در قرن سیزدهم هجری و 20 فلز در قرن چهاردهم هجری (قرن معاصر) کسف شده‌اند. البته بین تاریخ کشف و زمانی که تولید فلزات از نظر اقتصادی مقرون به صرفه شده است، فاصله زمانی طولانی وجود دارد. چون در بررسی مسائل متالوژی ، نه‌تنها تولید فلزات امر مهمی می‌باشد، بلکه موارد کاربرد آنها نیز باید قابل توجیه باشد.
    برای مثال اورانیوم در سال 1221هجری خورشیدی کشف شده است، اما تولید صنعتی آن تا سال 1320هجری خورشیدی (1841م.) طول کشیده است. به عبارت دیگر حدود یک قرن پس از کشف اورانیوم ، یعنی زمانی که پدیده شکافت اتمی فلزات هسته‌ای تحت استفاده مطلوب قرار گرفت، تولید آن در سطح صنعتی شروع گردید.
    شکل‌گیری علم متالوژی
    با گذشت زمان ، کشف روشهای جدید استخراج و تصفیه فلزات ، شناسایی مشخصات ساختاری و فیزیکی مواد و فنون جدید شکل دادن و کاربر روی فلزات ، صنعت متالوژی به عنوان شاخه ای از علم ، جایگاهی مستقل یافت. امروزه علم متلوژی را به دو بخش کلی شامل متالوژی استخراجی و متالوژی صنعتی تقسیم نموده‌اند که این دو بخش ، اخیرا در دانشگاهها نیز به‌عنوان گرایشهای رشته مهندسی متالوژی انتخاب شده‌اند.
    متالوژی استخراجی و شیمیایی شامل جداکردن فلزات از سنگ معدن و تصفیه آنها (تولید فلزات) ، شناخت انواع کوره‌ها ، سوخت‌ها و فعل و انفعالات شیمیایی می‌باشد. این گرایش انواع متعددی از روشها را در بر می‌گیرد که از جمله می‌توان به کانه آرایی ، پر عیار کردن مواد معدنی ، شستن ، ذوب کردن ، تصفیه فلز مذاب و تولید شمش اشاره نمود.
    متالوژی صنعتی شامل کار بر روی فلزات و مواد و تهیه محصول نهایی می‌باشد. در این گرایش همچنین خواص و مشخصات فیزیکی ، ساختاری و مکانیکی مواد نیز بررسی می‌شوند. منظور از کار کردن روی فلزات ، روشهای مختلف تولید مصنوعات فلزی می‌باشد که مهمترین شیوه‌های تولید عبارتند از: متالوژی ژودر ، شکل دادن ، جوشکاری و ماشینکاری.
    انتخاب نوع روش تولید عمدتا به مسائل اقتصادی ، خواص فلزات ، زمان تولید ، اندازه ، شکل و تعداد قطعات مورد نیاز بستگی دارد. به‌عنوان مثال ، فلزاتی که خاصیت پلاستیک کمی دارند یا قطعاتی که دارای اشکال پیچیده هستند، به روش ریخته گری شکل داده می‌شوند
    اطلاعات اولیه
    با گذشت زمان ، کشف روشهای جدید استخراج و تصفیه فلزات ، شناسایی مشخصات ساختاری و فیزیکی مواد و فنون جدید شکل دادن و کاربر روی فلزات ، صنعت متالوژی به‌عنوان شاخه ای از علم جایگاهی مستقل یافت. امروزه علم متالوژی را به دو بخش کلی شامل متالوژی استخراجی و متالوژی صنعتی تقسیم می‌کنند که این دو بخش ، اخیرا در دانشگاهها نیز به‌عنوان گرایشهای رشته مهندسی متالوژی انتخاب شده‌اند.
    متالوژی استخراجی و شیمیایی ، شامل جداکردن فلزات از سنگ معدن و تصفیه آنها (تولید فلزات) ، شناخت انواع کوره‌ها ، سوخت‌ها و فعل و انفعالات شیمیایی می‌باشد. این گرایش ، انواع متعددی از روشها را در برمی‌گیرد که از جمله می‌توان به کانه‌آرایی ، پر عیار کردن مواد معدنی ، تشویه ، ذوب کردن ، تصفیه فلز مذاب و تولید شمش اشاره نمود.
    متالوژی صنعتی ، شامل کاربر روی فلزات و مواد و تهیه محصول نهایی می‌باشد. در این گرایش همچنین خواص و مشخصات فیزیکی ، ساختاری و مکانیکی مواد نیز بررسی می‌شوند. منظور از کار کردن روی فلزات ، روشهای مختلف تولید مصنوعات فلزی است که مهمترین شیوه‌های تولید عبارتند از: متالوژی پودر ، شکل دادن ، جوشکاری و ماشینکاری.
    انتخاب نوع روش تولید عمدتا به مسائل اقتصادی ، خواص فلزات ، زمان تولید ، اندازه ، شکل و تعداد قطعات مورد نیاز بستگی دارد. به‌عنوان مثال ، فلزاتی که خاصیت پلاستیک کمی دارند یا قطعاتی که دارای اشکال پیچیده هستند، به روش ریخته‌گری شکل داده می‌شوند. به‌منظور آگاهی بیشتر از نحوه انتخاب روش تولید و شناخت مسائل فوق ، روشهای تولید مذکور به اختصار تشریح می‌گردند.
    ریخته‌گری
    ریخته‌گری عبارت از شکل دادن فلزات و آلیاژها از طریق ذوب ، ریختن مذاب در محفظه ای به نام قالب و آنگاه سرد کردن و انجماد آن مطابق شکل محفظه قالب می‌باشد. این روش ، قدیمی‌ترین فرآیند شناخته شده برای بدست آوردن شکل مطلوب فلزات است. اولین کوره‌های ریخته‌گری خاک رس ساخته شده است که لایه‌هایی از مس و چوب به تناوب در آن چیده می‌شد و برای هوادادن از دم (فوتک) بزرگی استفاده می‌کردند. بسیاری از قالبهای اولیه نیز از خاک رس ، خاک نسوز ، ماسه و سنگ تهیه می‌شد.
    شواهدی در دست است که چینی‌ها در حدود 700 سال قبل از میلاد به ریخته‌گری آهن مبادرت ورزیدند. ولی یافتن قطعات ریخته شده از خرابه‌های شهر حسن‌لو در آذربایجان شرقی نشان دهنده توسعه این فن در سال 900 قبل از میلاد در ایران بوده است.
    ریخته‌گری هم علم است و هم فن ، هم هنر است و هم صنعت. به میزانی که ریخته‌گری از حیث علمی پیشرفت می‌کند، ولی در عمل هنوز تجربه ، سلیقه و هنر قالب‌ساز و ریخته‌گر است که تضمین‌کننده تهیه قطعه ای سالم و بدون عیب می‌باشد. این فن از اساسی‌ترین روشهای تولید است، زیرا حدود 50 درصد وزنی کل قطعات ماشین‌آلات به این طریقه ساخته می‌شوند.
    برای ریخته‌گری ، از فولاد و چدن‌ها (فلزات آهنی) ، برنزها ، برنج‌ها ، آلیاژهای آلومینیم و منیزیم و آلیاژهای منیزیم و روی (فلزات غیر آهنی) به‌عنوان مهمترین فلزات ریخته‌گری استفاده می‌شود. معمولا روشهای ریخته‌گری را به نام ماده سازنده قالب اسم‌گذاری می‌کنند، مانند ریخته‌گری در ماسه که جنس قالب آن ، ماسه است. مهمترین روشهای ریخته‌گری عبارتند از:

    ریخته‌گری در قالب‌های موقت شامل ریخته‌گری در ماسه و در قالبهای پوسته‌ای
    ریخته گری در قالبهای دائمی شامل ریخته‌گری در قالبهای فلزی به روش گریز از مرکز
    نوعی قالب ریخته گری در شکل (4) مشخص شده است.
    متالوژی پودر
    با آنکه از نظر تاریخی ، متالوژی پودر از قدیمی‌ترین روشهای شکل دادن فلزات می‌باشد، اما تولید در مقیاس تجارتی با این روش ، از جدیدترین راههای تولید قطعات فلزی است. در دوران باستان ، از روشهای متالوژی پودر برای شکل دادن فلزاتی با نقطه ذوب بالاتر از آنچه در آن زمان می‌توانستند بوجود آورند، استفاده می‌کردند. اولین بار در اوایل قرن نوزدهم بود که پودر فلزات با روشی مشابه آنچه امروزه بکار می‌رود، با متراکم نمودن به‌صورت یکپارچه در آورده شد.
    متالوژی پودر (متالوژی گرد) ، فرآیند قالب‌گیری قطعات فلزی از پودر در فلز (یا مخلوط پودر فلزات) توسط اعمال فشارهای بالا می‌باشد. پس از عمل فشردن و تراکم پودرهای فلزی ، عمل تف جوشی (سینتر کردن) در دمای بالا در یک اتمسفر کنترل شده ( گاز هیدروژن ، ازت ، هلیم ) انجام می‌گیرد که در آن ، فلز متراکم ، جوش خورده ، به‌صورت ساختمان همگن محکمی پیوند می‌خورد.
    از جمله قطعاتی که بوسیله متالوژی پودر تولید می‌شوند، می‌توان به ابزار برش ، قطعات اتومبیل و قطعاتی در وسایل خانگی نظیر ماشین لباسشویی ، کمپرسور یخچال و کولر ، تلویزیون ، ضبط وصوت و غیره اشاره نمود. امروزه موارد استمعال اصلی متالوژی پودر را به پنج قسمت تقسیم می‌کنند:
    آلیاژ کردن فلزهای غیر قابل آلیاژ ، مثلا ساخت نقاط اتصال و جاروبک‌های موتور از پودرهای مس و گرافیت در صنعت برق
    ترکیب کردن فلزها و غیر فلزها ، نظیر مواد اصطکاکی ساخته شده از مس ، آهن و آزبست
    ترکیب کردن فلزهای دارای نقطه ذوب بالا با یکدیگر برای ریخته گری ، نظیر تنگستن ، تانتالیم و مولیبدن
    ساخت قطعات فلزی با خواص عالی ، نظیر یاتاقانهای خود روانکار که به‌علت وجود شبکه ای از خلل و فرج پیوسته (توسط روغن پر شده در آنها) به خودی خود روغنکاری می‌شوند
    تولید قطعات ظریف و دقیق ، نظیر بوش‌ها ، بادامک‌ها و چرخ دنده ها
    شکل دادن
    در فرآیند شکل دادن ، روشهای مختلفی برای تهیه محصول به‌صورت شکل نهایی بکار برده می‌شوند. این روشها شامل نورد ، آهنگری ، اکستروژن ، کشیدن ، پرس‌کاری ، چرخشی ، چرخشی برشی ، انفجاری ، الکترومغناطیسی ، الکتروهیدرولیکی و غیره می‌باشند که برخی از مهمترین این روشها در زیر بررسی می‌گردند.
    نورد کاری (غلتک کاری)
    قسمت اعظم فولادی که در کارخانه‌های فولادسازی به‌صورت شمش تهیه می‌گردد، توسط دستگاههای نورد به ورق ، تیرآهن ، تسمه‌های فولادی ، ریل ، انواع پروفیل ، لوله و سیم تبدیل می‌شود. دستگاه نورد بطور ساده و ابتدایی از دو غلتک استوانه‌ای که روی هم قرار گرفته‌اند، تشکیل شده است. استوانه‌های مذکور بوسیله موتورها در جهت عکس یکدیگر حرکت دورانی نموده ، بدین ترتیب اگر شمش بین آنها هدایت گردد، استوانه‌ها آن را گرفته و از شکاف بین خود عبور می‌دهند.
    در اثر این عمل ، جسم پهن و طویل می‌شود. با انجام این عمل به دفعات و نزدیکتر کردن استوانه‌ها به یکدیگر ، سیم پهن تر ، نازکتر و طویل‌تر خواهد شد. محصولات نورد شامل میل گرد ، میل چهار و گوش ، تسمه باریک ، تیرآهن ، ناودانی ، ریل ، ورق و صفحه‌های فولادی با ضخامت‌های متفاوت ، لوله‌های بدون درز و با درز و با مقاطع دایره‌ای ، بیضی و چندضلعی می‌باشند.
    آهنگری (پتک‌کاری)
    عملیات آهنگری توسط ضربه چکش یا دستگاه پرس انجام می‌پذیرد. این روش ، شامل کار بر روی فلز توسط چکش‌کاری یا پرس‌کاری تا حصول شکل نهایی با قالب یا بدون قالب است. چکش‌کاری به دو روش دستی و ماشینی قابل انجام است که امروزه اکثرا چکش‌های ماشینی بکار گرفته می‌شوند. این چکش‌ها با بخار یا هوای فشرده کار می‌کنند و با اعمال ضربه‌های سنگین ، چکش‌کاری قطعات را انجام می‌دهند.
    برای ساخت قطعاتی چون محور کشتی‌ها ، میل‌لنگ‌ها ، لوله‌های توپ ، دیگ‌های بخار و غیره توسط پرس‌کاری تهیه می‌گردند. امروزه برای خم کردن وشکل دادن ورق در صنایع کشتی‌سازی و ماشین‌سازی نیز از پرس استفاده می‌شود.

    اکستروژن (حدیده کاری)
    اکستروژن ، فرآیندی است که بوسیله آن می‌توان قطعات و اشکالی را تولید نمود که تقریبا با هر روش ساخت دیگری غیر ممکن می‌باشد. در این روش ، فلز را تحت تاثیر نیروی زیاد وارد قالبی نموده ، به شکل مورد نظر (نظیر لوله ، سیم و مقاطع مخصوص) بیرون می‌آورند. آلومینیوم ، سرب ، روی ، قلع و برخی از فولادها از جمله موادی هستند که تحت فرآیند اکستروژن قرار می‌گیرند.
    کشیدن
    کشیدن ، عبارت است از امتداد دادن و کشیدن ورق برای تولید اشکال با سطوح مختلف. در این روش ، ورق فلزی حداقل در یک جهت فشرده می‌شود. این فرآیند می‌تواند به‌صورت کشیدن قطعه از درون قالب (بر خلاف روش اکستروژن) انجام پذیرد و قطعاتی نظیر لوله‌های بدون درز ، قطعات سقف اتومبیل ، پوکه‌های فشنگ ، ظروف حلبی و ماهی‌تابه‌ها به این روش تهیه می‌شوند.
    جوشکاری
    بطور کلی ، جوشکاری عمل اتصالات دادن قطعات فلزی به یکدیگر توسط گرم کردن محل‌های تماس تا حالت ذوب یا خمیری است که اتم‌های هر دو قطعه فلز در منطقه جوش در هم نفوذ کرده ، پس از سرد شدن اتصال محکم ایجاد می‌نمایند.
    برای ایجاد حالت ذوب یا خمیری ، انرژی‌های الکتریکی و شیمیایی به‌عنوان منابع حرارت بکار برده می‌شوند.
    برای تامین این انرژی‌ها از ژنراتور یا اشتعال مخلوطی از گازهای سوختنی نظیر استیلن ، هیدروژن ، گازهای طبیعی ، بخار بنزین ، بنزول و اکسیژن استفاده می‌گردد. بسته به نوع جوشکاری ، به ابزار دیگری نظیر الکترود ، انبر جوشکاری ، ماسک ، مشعل ، کپسول گاز ، میز کار ، پرده‌های حفاظتی و غیره نیاز می‌باشد. الکترود ، مفتول فلزی می‌باشد که جنس آن به نوع فلز جوش‌دادنی بستگی دارد.
    اطراف این مفتول ، از ترکیبات شیمیایی مختلف پوشیده شده است تا از نفوذ اکسیژن ، ازت ، هیدروژن به منطقه ذوب یا خمیری جلوگیری کنند. فلزات مصرفی در الکترودها عموما انواع فولادها ، چدن‌ها و فلزات غیر آهنی مانند مس ، برنج ، برنز و آلومینیم می‌باشند. جوشکاری و لحیم‌کاری از هنرهای قدیمی محسوب می‌شوند و در زمانهای گذشته توسط رومیان برای اتصال ذرات طلا در زیور آلات بکار گرفته می‌شدند.
    امروزه روشهای جوشکاری متعددی در صنعت بکار برده می‌شود که به چهار گروه جوشکاری فشاری ، جوشکاری ذوبی ، جوشکاری زرد و لحیم‌کاری تقسیم می‌شوند. برخی از مهمترین این روشها عبارتند از: جوش با قوس الکتریکی ، جوش گاز ، جوش آهنگری ، جوش القایی ، جوش مقاومتی ، جوش سیلانی و لحیم سخت و نرم.
    ماشین‌کاری
    فرآیند ماشین‌کاری عبارت از شکل دادن مواد توسط تراوش و برش می‌باشد. این عمل بوسیله ابزارها و ماشین‌های تراوش و برش انجام می‌گیرد. مقدار قشری که از قطعه اولیه برداشته می‌شود تا قطعه صیقلی و نهایی ایجاد گردد، اصطلاحا تراوش خور می‌نامند. به‌منظور رعایت مسائل اقتصادی ، مقدار تراوش خور باید حداقل باشد تا مصرف فلز و هزینه‌های تراشکاری کاهش یابد.
    در برش‌کاری (قیچی‌کاری) نیز برای برش و جدا کردن فلز از دو نیروی متقابل استفاده می‌شود. این نیروها ، توسط دو تیغه (با فاصله از یکدیگر) اعمال می‌شوند که با نیروی کافی موجب از هم‌گسیختگی و شکسته شدن فلز می‌گردند. در ماشین‌کاری قطعات ، بر حسب نوع کار از ماشین‌های تراوش ، فرز ، مته صفحه تراش ، کله‌زنی ، سنگ زنی ، تیز کاری و سوراخ‌کن استفاده می‌شود که معمولا این قطعات ، خود محصول فرآیندهای ریخته‌گری ، آهنگری ، نورد و غیره می‌باشند.
    ماشین‌کاری فلز با وسایل تخلیه الکتریکی پر فرکانس نیز فرآِیند نسبتا جدید است که به میزان وسیعی بکار گرفته می‌شود. این روش ، برای ماشین‌کاری اشکال پیچیده و بریدن مقاطع نازک از نیمه‌هادی‌ها و آلیاژهای وسایل فضایی بکار می‌رود.

    كاربرد بیوتكنولوژی در متالوژی
    بیوتكنولوژی به عنوان فنونی كه از میكروارگانیسم ها و یا بخشی از سلول برای دسترسی به بعضی از اهداف صنعتی و بهداشتی و زیست محیطی استفاده می كند، تعریف شده است. در صنایع معدنی و متالوژی نیاز روز افزون به مواد اولیه و كاهش ذخایر معدنی پرعیار ، ضرورت مصرف بهینه انرژی در رعایت دقیق معیار های زیست محیطی ، كاربرد روش های جدید ، ایجاد تحول در صنایع معدنی و متالوژی را ضروری كرده است. همچنین توسعه فن آوری های جدید برای فرآوری منابع كم عیار و یا منابعی كه روش های معمول كارایی لازم را برای آنها نداشته و یا ملاحظات اقتصادی امكان استفاده از آنها را نمی دهد. توجه به بازیابی مواد معدنی و متالوژی محور دیگری از این تحول می باشد. توسعه روش هایی جهت كاهش آلودگی های زیست محیطی كه منشا در گاز خروجی كارخانه ها و نیروگاه ها ، بخصوص صنایع متالوژی و پساب صنایع مختلف دارد، مانند جذب و بازیابی فلزات سنگین از پساب ها و كاهش گوگرد از سوخت های فسیلی. برخی از مشكلات صنایع معدنی و متالوژی با كاربرد فنونی كه از میكروارگانیسم ها استفاده می كنند، قابل حل می باشد و در نتیجه بسیاری از توسعه روش ها و فن آوری های جدید نیز بر این پایه قرار دارند.
    كاربرد این روش ها در متالوژی نسبت به سایر صنایع جدید تر بوده و برای اولین بار از حدود چهل سال قبل شروع شده است . امروزه این فنون در متالوژی به منظور استفاده از مواد اولیه فقیر فلزی ، تصفیه پساب های صنعتی و بازیابی فلزات موجود در آن ، حل كردن مواد معدنی و غیره بكار می رود. با تغییر ساختار ژنتیكی میكروارگانیسم ها در جهت رسیدن به مشخصات مورد نیاز، موفق به تولید فرآورده هایی در صنعت متالوژی شده اند، كه امكان تهیه آن از طریق سایر روش هابه صورت اقتصادی میسر نبوده است.
    میكروارگانیسم ها جهت سوخت و ساز و انجام فرآیند های حیاتی خود از منابع آلی و معدنی موجود در محیط تغذیه می كنند. از این رو واكنش های مختلف شیمیایی ، شیمی فیزیكی را در شرایط مختلف طبیعی و یا مصنوعی تحت تاثیر خود قرار می دهند. كاربرد مثبت واكنش های متابولیكی موجودات زنده در زمینه فرآوری مواد معدنی و استخراج فلزات قلمرو جدیدی است كه تحقیقات پیرامون آن بیشتر در بخش های بیوتكنولوژی و میكرو بیولوژی انجام می گیرد. برخی كاربردها مانندبهبود بازدهی و فرآیندهای اكسیده و حل كردن كانی های كم عیار سولفیدی و كانسنگ های طلا و یا اورانیوم ، امروزه در مقیاس صنعتی استفاده می شوند
    .
    كاربرد بیو تكنولوژی در فر آوری و استخراج فلزات متعدد می باشد كه برخی از مهمترین آنها عبارت اند از:
    - استفاده از میكروارگانیسم ها در كانه ارایی : میكروارگانیسم هایی در طبیعت وجود دارند كه ضمن داشتن بار الكتریكی منفی به شدت آب گریز اند و می توان از آنها برای تغلیظ بعضی از مواد معدنی استفاده كرد. بررسی های انجام شده نشان داده است كه گونه ای از میكروارگانیسم ها را می توان برای جدا سازی بعضی از كانی ها مانند فسفات ها ، ذرات ریز ذغال و كانی هماتیت مورد استفاده قرار داد.
    - استفاده از میكروارگانیسم در تصفیه پساب ها : آب های خروجی بسیاری از صنایع حاوی تركیبات آلی و معدنی است ، كه طی فرآیند مورد استفاده قرار گرفته اند. این تركیبات مناسب با ماهیتشان به درجات متفاوت سمی می باشند. به عنوان مثال می توان از محلول های سیانور دار كه در استخراج طلا بكار برده می شود ، نام برد. بعضی از میكروارگانیسم ها و یا آنزیم ترشح شده از آنها در تجزیه سیانور آزاد موثر بوده و در نتیجه در بهبود و ضعیت زیست محیطی پساب های سیانوری تولید شده از واحد های هیدرو متالوژی فلزات گرانبها نقش مهمی دارند. بازیابی فلزات و جذب آنها از دور ریز ها توسط باكتری ها بسار سریع بوده و معمولا از چند دقیقه تجاوز نمی كند . عبور پساب آلوده از حجم آلوده باكتری ( بیوماس) برای حذف عناصر آلوده كننده آن كافی می باشد. آب خروجی راكتورهای اتمی معمولا حاوی مواد رادیواكتیو می باشد. كه مقدار آن از یك تا چند ppm تغییر می كند. و عملا بجز كاربرد باكتری ، سایر رو ش ها بصورت اقتصادی قادر به حذف آنها نیستند.
    - استفاده در جذب یون های فلزی : بعضی از موجودات ذره بینی قادرند یون های فلزات سنگین را از محلول ، بویژه محلول های رقیق جذب سطح خارجی خود كرده و بدین ترتیب این یون های فلزی را از محلول جدا كنند. این روش برای جدا سازی فلزات از پساب هی صنعتی و یا از محلول های حاصل از فرآیندهای هیررو متالوژی كاربرد فرآوان دارند.
    - استفاده در استخراج فلزات : در استخراج فلزات به روش هیدرو متالوژی یكی از مهمترین مراحل حل كردن كانی های معدنی به كمك حلال مناسب بنحوی كه در این فرآیند قسمت بیشتر فلز مورد نظر به صورت محلول و یا رسوب در آید . اكسیده كردن و انحلال میكروبی سنگ های معدنی بویژه سنگ های سولفوری كم عیار مهمترین جنبه كاربرد میكروارگانیسم ها به منظور افزایش بازدهی حل شدن می باشد كه در مورد كانی های طلادار و كانسنگ های اورانیم كاربرد صنعتی دارد. بكارگیری میكروارگانیسم ها جهت تسریع واكنش های مورد نظر در حل كردن كه در نهایت به آزاد سازی آنها منجر می شود. تحت عنوان فروشویی زیستی شناخته می شود. مزایایاین روش نسبت به روش های دیگر عبارت اند از :
    * اثرهای مضر زیست محیطی به مراتب كمتر بر روی منابع آبی و هوا
    * نیاز به انرژی كمتر
    * عدم نیاز به تجهیزات پیچیده و در نتیجه سرمایه گذاری كمتر
    * عمل حل كردن بیولوژیكی را می توان در اعماق زمین و بدون استخراج معدنی انجام داد.
    محدودیت عمده بكار گیری این روش ناشی از نیاز به دانش فنی و آگاهی عمیق به مبانی بیوتكنولوژی می باشد. دست اندر كاران پروژه های تحقیقاتی در این زمینه باید حتما از مبانی میكروب شناسی ، بیوشیمی و بیوتكنولوژی اطلاع كافی داشته باشند.
    چند نمونه كاربرد باكتری در مقیاس صنعتی و نیمه صنعتی :
    1- حل كردن ارانیوم ( توسط باكتری های TF از سنگ معدن حاوی پیریت پیروتیت)
    2- استخراج طلا از سنگ های مقاوم طلا دار ( سنگ معدن پیریت و ارسینو پیریت)
    3- حل كردن بیولوژیك رس ها و تولید آلومین

    - گوگرد زدایی زیستی: سوخت های فسیلی حاوی گوگرد در محصولات احتراق خود علاوه بر گاز های اكسید گوگرد و اكسیز ازت ، مقداری غبار نیز وجود دارد. كه مجموعا از عوامل آلوده كننده محیط زیست می باشند. باران های اسیدی ناشی از رها سازی اكسید گوگرد در فضا ، حیات بسیاری از گیاهان و جانداران و بخصوص آبزیان را به خطر بیندازند. بعلاوه این باران ها عامل خوردگی فلزات و سنگ های ساختمتنی نیز می باشند.
    حذف گاز های الوده كننده از محصولات احتراق رقم بسیار بزرگی را تشكیل می دهد. از همین رو جذف و یا كاهش مقدار گوگرد در سوخت های فسیلی اهمیت بالایی برای صنایع دارد. حذف گوگرد مبتنی بر فن اوری های فیزیكی و شیمیایی ، مشكلاتی را به همراه دارد كه رویكرد به روش های بیوتكنولوژی را ناگزیر نموده است. از ویژگی های مثبت آن این است كه برخی از میكروارگانیسم ها به طور اختصاصی فقط پیوند كربن - گوگرد را شكسته و با جدا كردن گوگرد بقیه مولكول آلی را رها می كنند. در آینده نچندان دور گوگرد زدایی زیستی جایگزین روش های فیزیكی و شیمیایی می شود.

  2. کاربرانی که از پست مفید ghasem motamedi سپاس کرده اند.


اطلاعات موضوع

کاربرانی که در حال مشاهده این موضوع هستند

در حال حاضر 1 کاربر در حال مشاهده این موضوع است. (0 کاربران و 1 مهمان ها)

موضوعات مشابه

  1. اصول کلی استخراج فلزات
    توسط ghasem motamedi در انجمن متالورژی استخراجی
    پاسخ ها: 0
    آخرين نوشته: 3rd January 2010, 07:10 PM
  2. مفاهيم مهندسي معدن/‌ آشنايي با واژگان عمومي
    توسط ریپورتر در انجمن سایر موضوعات مهندسی معدن
    پاسخ ها: 0
    آخرين نوشته: 16th November 2009, 09:07 PM
  3. فلزات و تغییر شکلشان
    توسط ریپورتر در انجمن مهندسی ساخت و تولید
    پاسخ ها: 0
    آخرين نوشته: 9th October 2009, 10:53 AM
  4. استخراج
    توسط *مینا* در انجمن شیمی آلی
    پاسخ ها: 0
    آخرين نوشته: 1st August 2009, 08:44 PM
  5. آموزشی: تولید و چرخه سوخت هسته ای
    توسط مسعود عاطف در انجمن شیمی عمومی
    پاسخ ها: 0
    آخرين نوشته: 16th December 2008, 11:14 AM

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •