دوست عزیز، به سایت علمی نخبگان جوان خوش آمدید

مشاهده این پیام به این معنی است که شما در سایت عضو نیستید، لطفا در صورت تمایل جهت عضویت در سایت علمی نخبگان جوان اینجا کلیک کنید.

توجه داشته باشید، در صورتی که عضو سایت نباشید نمی توانید از تمامی امکانات و خدمات سایت استفاده کنید.
صفحه 1 از 2 12 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 , از مجموع 14

موضوع: خوردگی در مهندسی مواد

  1. #1
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض خوردگی در مهندسی مواد

    خوردگی
    هزينه هاي خوردگي
    تخمين هزينه هاي سالانة خوردگي در ايالات متحده بين 8 بيليون دلار تا 126 بيليون دلار مي باشد. بهر ترتيب، خوردگي زيان اقتصا دي عظيمي است و براي كاهش دادن به كارهاي زيادي مي توان انجام داد. اگر اين نكات را در نظر بگيريم كه هر جا فلز و مواد ديگر مورد استفاده قرار مي گيرند خوردگي با درجه وشدتهاي متفاوتي واقع مي گردد، اين رقمهاي بزرگ دلاري چندان غير منتظره نخواهد بود.
    در حقيقت اگر خوردگي وجود نداشت اقتصاد جامعة ما بشدت تغيير مي كرد. مثلاً اتومبيلها، كشتيها، خطوط لوله زير زميني و وسايل خانگي احتياج به پوشش نداشتند، صنايع فولاد زنگ نزن از بين مي رفتند و مس فقط براي مقاصد الكتريكي بكار مي رفت. اكثر كارخانجات و محصولاتي كه از فلز ساخته مي شدند از فولاد يا چدن ساخته ميشدند.
    اگر چه خوردگي اجتناب ناپذير است، ولي هزينة آنرا به مقدار زيادي ميتوان كاهش داد. مثلاً يك آند ارزان قيمت منيزيم مي تواند عمر تانك آب گرم خانگي را دو برابر كند. شستشوي اتومبيل براي زدودن نمكهاي كه براي يخ بندان روي جاده مي پاشند مفيد است. انتخاب صحيح مواد و طراحي خوب، هزينه هاي خوردگي را كاهش ميدهد. يك برنامه صحيح تعميرات و نگهداري رنگ چندين برابر مخارجش را صرفه جويي ميكند. اينجاست كه مهندسي خوردگي وارد صحنه مي شود و مي تواند موثر باشد – ماموريت اصلي او مبارزه با خوردگي است. جدا از مخارج مستقيم دلاري، خوردگي يك مشكل جدي است زيرا به طور روشني باعث تمام شدن منابع طبيعي ما مي گردد. مثلاً فولاد از سنگ آهن بدست مي آيد، ميزان توليد داخلي سنگ آهن پر عياركه مستقيماً قابل استفاده باشند بشدت كاهش يافته است. توسعة صنعتي سريع بسياري از كشورها نشان مي دهد كه رقابت و قيمت منابع فلزي افزايش خواهد يافت. ايالات متحده ديگر مصرف كنندة اصلي منابع معدني نيست.
    مهندسي خوردگي
    مهندسي خوردگي كاربر دانش وفن يا هنر جلوگيري ياكنترل خسارت ناشي از خوردگي به روش اقتصادي و مطمئن ميباشد. براي اينكه مهندس خوردگي به خوبي از عهده وظايف خود برآيد، بايستي با اصول خوردگي و عمليات مبارزه با آن، خواص شيميايي، متالورژيكي، فيزيكي و مكانيكي مواد، آزمايشات خوردگي، ماهيت محيط هاي خورنده، قيمت مواد اوليه، نحوه ساخت و توليد كامپيوتر و طراحي قطعات آشنا باشد. او همچنين بايستي خصوصيات معمول يك مهندس كه عبارت است از : توانائي ارتباط برقرار كردن با ديگران، صداقتتوانايي تفكر و تجزيه تحليل كردن، آگاهي عميق از اهميت خطرات در عمل، عقل سليم يا شعور، منظم و مرتب بودن، و مهمتر از همه احساس عميق و صحيح مسائل اقتصادي را دارا باشد. در حل مسائل خوردگي بايستي روشي را انتخاب نمايد كه بيشترين بهره را داشته باشد.
    مقالات زير كاربردهاي تكنولوژي كامپيوتر در مهندسي خوردگي را نشان مي دهد:
    ماشينهاي متفكر(هوش مصنوعي) در ژورنال مهندسي شيمي، سپتامبر 1981، صفحات 45-51 به بررسي مثالهاي متعدد در مورد پيش بيني خوردگي توام با تنش پرداخته است. همچنين از ديگر كاربرهاي تكنولوژي كامپيوتر در خوردگي مي توان به مقالات زير اشاره كرد.
    S.N. Smith and F.E. Rizzo, Computer Assisted Corrosion
    Engineering, Materials Performans, 19:21 – 23(oct 1980)
    C. Edeleanu, the Efect of the Microprissors on Corrosion
    Technology, Materials Performance, 22:82 – 83 (Oct 1983)
    در گذشته تعداد نسبتاًكمي از مهندسين با آموزش رسمي در خوردگي وجود داشتند. اكثراً افرادي دركه اين رشته كار مي كردند داراي زمينه هاي شيمي، برق يا متالوژي بودند. خوشبختانه اين وضعيت امروزه تغيير كرده است.
    از فقط 3 دانشگاه در 1946، امروزه 65 دانشگاه در ايالات متحده دروس رسمي در زمينه خوردگي ارائه مي كنند. مفهوم اينها آن است كه امروزه صدها مهندس در صحنه وجود دارند كه درس رسمي در اين زمينة خوردگي گذرانده اند. در گذشته، و حتي امروزه، خوردگي را به عنوان "معضلي" كه بايستي آنرا تحمل كرد در نظر مي گيرند. غفلت علت بسياري از انهدام هاي زودرس، غير منتظره و گران مي باشد- غفلت بوسيلة افرادي كه بايستي اطلاعات بهتري داشته باشند. بطور مثال، دو فروشندة آنده هاي قرباني شونده، سيستم هاي خود راحفاظت آندي مي نامند! در حقيقت اين سيستم حفاظت كاتدي است كه كاملاً متفاوت است.
    تعريف خوردگي
    خوردگي را تخريب يا فاسد شدن يك ماده در اثر واكنش با محيطي كه در آن قرار دارد تعريف مي كنند. بعضي ها اصرار دارند كه اين تعريف بايستي محدود به فلزات باشد، ولي غالباً مهندس خوردگي بايستي براي حل يك مسئله هم فلزات و هم غير فلزات را در نظر بگيرد. سراميكها، پلاستيكها، لاستيك و مواد غير فلزي ديگر نيز منظور شده اند. مثلاً، تخريب رنگ ولاستيك بوسيله نور وخورشيد يا مواد شيميايي، خورده شدن جدارة كورة فولاد سازي، و خورده شدن يك فلز جامد بوسيله مذاب يك فلز ديگر تماماً خوردگي ناميده مي شوند. خوردگي مي تواند سريع ياكندصورت گيرد. فولاد زنگ نزدن در حالت حساس شده به وسيله اسيد پلي تيونيك ظرف چند ساعت بشدت خورده مي شود. ريلهاي راه آهن معمولاً به آهستگي زنگ مي زنند- ولي سرعت زنگ زدن آنقدر نيست كه بر كارايي آنها در سالهاي زياد اثري بگذارد. ستون آهني معروف دهلي در هندوستان حدود 2000 سال پيش ساخته شده و هنوز به خوبي روز اول است. ارتفاع آن 32 فوت است.
    لكن بايستي توجه شود كه اين ستون آهني عموماً در شرايط جوي خشك قرار داشته است. خوردگي فلزات را مي توان بر عكس متالوژي استخراجي در نظر گرفت. در متالوژي استخراجي در نظر گرفت. در متالوژي استخراجي، هدف عمدتاً بدست آوردن فلزاز سنگ معدن و تصفيه يا آلياژسازي آن براي مصارف مختلف مي باشد. اكثر سنگ معدنهاي آهن حاوي اكسيد هاي آهن هستند و زنگ زدن فولاد به وسيله آب واكسيژن منجر به تشكيل اكسيد آهن هيدارته مي گردد. اگرچه اكثر فلزات موقعي كه خورده ميشوند تشكيل اكسيدهايشان را مي دهند ولي لغت زنگ زدن فقط در مورد آهن و فولاد بكار مي رود. بنابراين ميگوئيم فلزات غير آهني خورده مي شوند و نمي گوييم زنگ مي زنند. محيطهاي خورنده عملاً كليه محيطها خورنده هستند، لكن قدرت خوردگي آنها متفاوت است. مثالهايي در اين مورد عبارتند : از هوا و رطوبت، آبهاي تازه، مقطر، نمكدار، و معدني، آتمسفرهاي روستائي، شهري، و صنعتي، بخار و گازهاي ديگر مثل كلر، آكونياك، سولفور هيدروژن، دي اكسيدگوگرد، و گازهاي سوختني، اسيد هاي معدني مثل اسيد كلريدريك، سولفوريك، و نيتريك، اسيدهاي آلي مثل اسيد نفتنيك، استيك، و فرميك، قليائي ها، خاكها، حلالها، روغن نباتي و نفتي، و انواع و اقسام محصولات غذائي. بطور كلي مواد "معدني" خورنده تر از مواد " آلي" مي باشند. مثلاً خوردگي در صنايع نفت بيشتر در اثر كلرور سديم، گوگرد، اسيد سولفوريك و كلريدريك و آب است تا بخاطر روغن، نفت و بنزين. كاربر درجه حرارتها و فشارهاي بالا در صنايع شيميايي باعث امكان پذير شدن فرايند جديد يا بهبود فرايند قديمي شده است، به عنوان مثال راندمان بالاتر، سرعت، توليد بيشتر، يا تقليل قيمت تمام شده. اين مطلمب هم چنين در مورد توليد انرژي از جمله انرژي هسته اي، صنايع فضائي و تعداد بسيار زيادي از روشها و فرايند ها صادق است. درجه حرارتها و فشارهاي بالاتر معمولاً باعث ايجاد شرايط خوردگي شديدتري مي گردند. بسياري از فرايند ها و عمليات متداول امروزه بدون استفاده از مواد مقاوم در برابر خوردگي غير ممكن يا غير اقتصادي ميباشد.

    بررسی انواع خوردگی
    خوردگی از 8 روش می تواند به سطوح فلزی حمله کند . هشت دلیل موجه برای به کارگیری کامپوزیت ها در سازه های نظامی و غیرنظامی . این 8 روش عبارتند از :

    حمله یکنواخت Uniform Attack
    در این نوع خوردگی که متداول ترین نوع خوردگی محسوب می شود ، خوردگی به صورتی یکنواخت به سطح فلز حمله می کند و به این ترتیب نرخ آن از طریق آزمایش قابل پیش بینی است .
    خوردگی گالوانیک
    Galvanic Corrosion
    این نوع خوردگی وقتی رخ می دهد که دو فلز یا آلیاژ متفاوت ( یا دو ماده متفاوت دیگر همانند الیاف کربن و فلز ) در حضور یک ذره خورنده با یکدیگر تماس پیدا کنند . در منطقه تماس ، فرایندی الکترو شیمیایی به وقوع می پیوندد که در آن ماده ای به عنوان کاتد عمل کرده و ماده دیگر آند می شود . در این فرآیند کاتد در برابر اکسیداسیون محافظت شده و آند اکسید می شود .

    خوردگی شکافی
    Crevice Corrosion
    این ساز و کار وقتی رخ می دهد که یک ذره خورنده در فاصله ای باریک ، بین دو جزء گیر کند . با پیشرفت واکنش ، غلظت عامل خورنده افزایش می یابد . بنابراین واکنش با نرخ فزاینده ای پیشروی می کند.

    آبشویی ترجیحی Selective Leaching
    این نوع خوردگی انتخابی وقتی رخ می دهد که عنصری از یک آلیاژ جامد از طریق یک فرآیند خوردگی ترجیحی و عموما ً با قرار گرفتن آلیاژ در معرض اسیدهای آبی خورده می شود . متداول ترین مثال جدا شدن روی از آلیاژ برنج است . ولی آلومینیوم ، آهن ، کبالت و زیرکونیم نیز این قابلیت را دارند .

    خوردگی درون دانه ای
    Intergranular Corrosion
    این نوع خوردگی وقتی رخ می دهد که مرز دانه ها در یک فلز پلی کریستال به صورت ترجیحی مورد حمله قرار می گیرد . چندین عامل می توانند آلیاژی مثل فولاد زنگ نزن آستنیتی را مستعد این نوع خوردگی سازند . از جمله حضور ناخالصی ها و غنی بودن یا تهی بودن مرزدانه از یکی از عناصر آلیاژی .
    خوردگی حفره ای Pitting Corrosion
    این نوع خوردگی تقریبا ً همیشه به وسیله یون های کلر و کلرید ایجاد می شود و به ویژه برای فولاد ضد زنگ بسیار مخرب است ؛ چون در این خوردگی ، سازه با چند درصد کاهش وزن نسبت به وزن واقعی اش ، به راحتی دچار شکست می شود . معمولا ً عمق این حفرات برابر یا بیشتر از قطر آنهاست و با رشد حفرات ، ماده سوراخ می شود .

    خوردگی فرسایشی Erosion Corrosion این نوع خوردگی وقتی رخ می دهد که محیطی نسبت به یک محیط ثابت دیگر حرکت کند ( به عنوان نمونه مایع یا دوغابی که درون یک لوله جریان دارد ) یک پدیده مرتبط با این گونه خوردگی ، سایش Fretting
    است که هنگام تماس دو ماده با یکدیگر و حرکت نسبی آنها از جمله ارتعاش به وجود می آید . این عمل می تواند پوشش های ضد خوردگی را از بین برده و باعث آغاز خوردگی شود .

    خوردگی تنشی Stress Corrosion
    این نوع خوردگی وقتی رخ می دهد که ماده ای تحت تنش کششی در معرض یک محیط خورنده قرار گیرد . ترکیب این عوامل با هم ، ترک هایی را در جزء تحت تنش آغاز می کند .

    تخریب فلزات با عوامل غیر خوردگی

    فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب می‌‌شوند که تحت عنوان خوردگی مورد نظر ما نیست.

    فرایند خودبه‌خودی و فرایند غیرخودبه‌خودی

    خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد. البته M+n می‌‌تواند به حالتهای مختلف گونه‌های فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ می‌‌زند که یک نوع خوردگی و پدیده‌ای خودبه‌خودی است. انواع مواد هیدروکسیدی و اکسیدی نیز می‌‌توانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیده‌ای خودبه‌خودی است، اشکال مختلف آن ظاهر می‌‌شود.

    بندرت می‌‌توان فلز را بصورت فلزی و عنصری در محیط پیدا کرد و اغلب بصورت ترکیب درکانی و بصورت کلریدها و سولفیدها و غیره یافت می‌‌شوند و ما آنها را بازیابی می‌‌کنیم. به عبارت دیگر ، با استفاده ‌از روشهای مختلف ، فلزات را از آن ترکیبات خارج می‌‌کنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج می‌‌کنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به ‌اکسید آلومینیوم می‌‌کنند و سپس با روشهای الکترولیز می‌‌توانند آن را احیا کنند.

    برای تمام این روشها ، نیاز به صرف انرژی است که یک روش و فرایند غیرخودبه‌خودی است و یک فرایند غیرخودبه‌خودی هزینه و مواد ویژه‌ای نیاز دارد. از طرف دیگر ، هر فرایند غیر خودبه‌خودی درصدد است که به حالت اولیه خود بازگردد، چرا که بازگشت به حالت اولیه یک مسیر خودبه‌خودی است. پس فلزات استخراج شده میل دارند به ذات اصلی خود باز گردند.

    در جامعه منابع فلزات محدود است و مسیر برگشت طوری نیست که دوباره آنها را بازگرداند. وقتی فلزی را در اسید حل می‌‌کنیم و یا در و پنجره دچار خوردگی می‌‌شوند، دیگر قابل بازیابی نیستند. پس خوردگی یک پدیده مضر و ضربه زننده به ‌اقتصاد است.

    <>

    جنبه‌های اقتصادی فرایند خوردگی

    برآوردی که در مورد ضررهای خوردگی انجام گرفته، نشان می‌‌دهد سالانه هزینه تحمیل شده از سوی خوردگی ، بالغ بر 5 میلیارد دلار است. بیشترین ضررهای خوردگی ، هزینه‌هایی است که برای جلوگیری از خوردگی تحمیل می‌‌شود.



    پوششهای رنگها و جلاها

    ساده‌ترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده ‌از رنگها بصورت آستر و رویه ، می‌‌توان ارتباط فلزات را با محیط تا اندازه‌ای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای ساده‌ای می‌‌توان رنگها را بروی فلزات ثابت کرد که می‌‌توان روش پاششی را نام برد. به کمک روشهای رنگ‌دهی ، می‌‌توان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.

    آخرین پدیده در صنایع رنگ سازی ساخت ر الکترواستاتیک است که به میدان الکتریکی پاسخ می‌‌دهند و به ‌این ترتیب می‌توان از پراکندگی و تلف شدن رنگ جلوگیری کرد.

    پوششهای فسفاتی و کروماتی

    این پوششها که پوششهای تبدیلی نامیده می‌‌شوند، پوششهایی هستند که ‌از خود فلز ایجاد می‌‌شوند. فسفاتها و کروماتها نامحلول‌اند. با استفاده ‌از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز می‌‌کنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیط‌های خنثی می‌‌توانند کارایی داشته باشند.

    این پوششها بیشتر به ‌این دلیل فراهم می‌‌شوند که ‌از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی می‌‌توانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکم‌تر می‌‌سازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمی‌‌تواند از خوردگی جلوگیری کند.

    پوششهای اکسید فلزات

    اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری می‌‌کند. بعنوان مثال ، می‌‌توان تحت عوامل کنترل شده ، لایه‌ای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز می‌‌چسبد و باعث می‌‌شود که ‌اتمسفر به‌ آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگ‌پذیر است و می‌‌توان با الکترولیز و غوطه‌وری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفره‌های شش وجهی است که با الکترولیز ، رنگ در این حفره‌ها قرار می‌‌گیرد.

    همچنین با پدیده ‌الکترولیز ، آهن را به اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل می‌‌کنند که مقاوم در برابر خوردگی است که به آن "سیاه‌کاری آهن یا فولاد" می‌‌گویند که در قطعات یدکی ماشین دیده می‌‌شود.

    پوششهای گالوانیزه

    گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام می‌‌گیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعه‌ای که می‌‌خواهیم گالوانیزه کنیم، کاتد الکترولیز را تشکیل می‌‌دهد و فلز روی در آند قرار می‌‌گیرد. یکی دیگر از روشهای گالوانیزه ، استفاده ‌از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.

    در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار می‌‌دهند و با استفاده ‌از غوطه‌ور سازی فلز در روی مذاب ، لایه‌ای از روی در سطح فلز تشکیل می‌‌شود که به ‌این پدیده ، غوطه‌وری داغ (Hot dip galvanizing) می‌گویند. لوله‌های گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و ... مورد استفاده قرار می‌‌گیرند.

    پوششهای قلع

    قلع از فلزاتی است که ذاتا براحتی اکسید می‌‌شود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم می‌‌شود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و ... بخوبی پایداری می‌‌کند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده می‌‌شود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی می‌‌باشد که بر روی ظروف آهنی این پوششها را قرار می‌‌دهند.

    پوششهای کادمیوم

    این پوششها بر روی فولاد از طریق آبگیری انجام می‌‌گیرد. معمولا پیچ و مهره‌های فولادی با این فلز ، روکش داده می‌‌شوند.

    فولاد زنگ‌نزن


    این نوع فولاد ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیرآلات مورد استفاده قرار می‌گیرد. این نوع فولاد ، آلیاژ فولاد با کروم می‌‌باشد و گاهی نیکل نیز به ‌این آلیاژ اضافه می‌‌شود.

    مقدمه‌اي در مورد خوردگي

    بر طبق آمارهاي وال استريت جورنال (11 سپتامبر 1981) هزينة خوردگي در صنعت نفت و گاز آمريكا حدود 2 بيليون دلار بوده است و مدام اين هزينه‌ها در حال افزايش هستند. خوردگي پلها، هزينه‌هاي خوردگي در اتومبيل‌ها در حد بيليونها دلار است. خوردگي در همه جا وجود دارد، در داخل و خارج از منزل، در جاده، در دريا، در كارخانه و در وسائل هوا فضا.

    كل هزينة سالانة سيلها، گردبادها، آتش‏سوزيها، رعد و برقها و زمين لرزه‌ها كمتر از هزينة خوردگي مي‌باشند.
    در حقيقت اگر خوردگي وجود نداشت، اقتصاد جوامع مختلف بشدت تغيير مي‏كرد. اگرچه خوردگي اجتناب‌ناپذير است، ولي هزينة آنرا مي‏توان كاهش داد. مثلاً يك آند ارزان قيمت منيزيم مي‏تواند عمر تانك آب گرم خانگي را دو برابر كند. انتخاب صحيح مواد و طراحي خوب، هزينه‌هاي خوردگي را كاهش مي‏دهد. يك برنامة صحيح تعميرات و نگهداري رنگ چندين برابر مخارجش را صرفه‌جوئي مي‏كند.
    با توجه به نكاتي كه گفته شد اهميت بسيار بالاي خوردگي و راههاي پيشگيري از خوردگي معلوم مي‏شود كه اين كار بر عهدة مهندسي خوردگي است. در مهندسي خوردگي، خوردگي چنين تعريف مي‌شود: تخريب يا فاسد شدن يك ماده در اثر واكنش با محيطي كه در آن قرار دارد.
    اين تعريف شامل فلزات و غيرفلزات مي‏شود. (مهندسي خوردگي، صص 6و7)
    هر جامعه‌اي كه به مفهوم خوردگي پي ببرد، افراد آن جامعه كامل، بالغ و متفكر خواهند بود و آن جامعه چنان پيشرفت خواهد كرد كه مي‏توان گفت در بعد ديگري از زمان هستند.
    خوردگی تنشی (SCC)
    ترک خوردن در اثر خوردگی توام با تنش که نتیجه اعمال همزمان تنش های کششی و محیط خورنده روی فلز می باشد، خوردگی تنشی نام دارد.

    معمولا دو گروه مهم از مواد دچار این نوع خوردگی می شوند:
    1. فولادهای ضد زنگ در محیط های حاوی یون کلرید
    2. برنج ها در محیط های آمونیاکی

    از ویژگی های ترک های خوردگی تنشی این است که عمود بر تنش اعمالی رشد می کنند.

    ویژگی تنش در خوردگی تنشی
    1. تنش کششی باشد.
    2. به اندازه کافی بزرگ باشد
    3. از هر نوعی می تواند باشد (مکانیکی یا پسماند)
    در این نوع خوردگی عامل تنش به عنوان شروع کننده است و در نهایت، شکست توسط عامل مکانیکی صورت می گیرد.

    فاکتورهای مهم در SCC: درجه حرارت، ترکیب شیمیایی محلول، ترکیب شیمیایی فلز، تنش و ساختمان فلز می باشد.

    مکانیزم های SCC
    به دلیل پیچیدگی اندرکنش بین محیط های مختلف، ماهیت آلیاژ، ساختار متالورژیکی و ... امکان وجود یک مکانیزم واحد برای خوردگی تنشی تمام سیستم های فلز-محیط وجود ندارد.

    الف. مکانیزم های متالورژیکی
    1. هم صفحه بودن نابجایی ها: در فولادهای زنگ نزن که مستعد خوردگی تنشی هستند، نابجایی ها به صورت دسته های هم صفحه قرار دارند. در حالی که در آلیاژهای که مقاوم هستند، نابجایی ها به صورت سلولی یا در هم پیچیده قرار دارند.
    2. پیرتنشی و جدایش میکرونی: در پیرتنشی فولادهای زنگ نزن آستنیتی، سیلان های پلاستیکی ناگهانی و تند اتفاق می افتد. این پدیده همراه با جدایش میکرونی اتم های حل شونده به نواقص دینامیکی در ساختار کریستالی است. این نوع جدایش می تواند باعث رفتار ترک خوردن در اثر خوردگی تنشی از طریق میان دانه ای شود.
    3. جذب شدن: عوامل فعال سطحی به سطح جذب شده و با باندهای تحت کرنش در نوک ترک واکنش نموده و باعث کاهش استحکام باند شده و سبب اشاعه ترک می شوند.

    ب. مکانیزم های حل شدن
    1. تشدید حل شدن در اثر تنش: ترک با انحلال آندی موضعی گسترش می یابد. نقش اصلی تغییر شکل پلاستیکی تشدید فرآیند حل شدن می باشد.
    2. تشکیل فیلم در دیواره ترک ها، بر اساس مکانیزم های هم صفحه ای بودن نابجایی ها: ترک ها در محلی که پله های لغرشی به سطح می رسند، شروع می شوند. رشد ترک ها در نتیجه انحلال فلزی است که در حال تسلیم است. با رشد ترک، پوسته ی روی دیواره ی ترک مجددا تشکیل می شود و به عنوان کاتد عمل می کند.
    3. غنی شدن نسبت به عنصر نجیب
    4. ترک خوردن در اثر خوردگی تنشی با شکستن و پاره شدن مداوم فیلم های غیرفعال پیشروی می کند.
    5. مهاجرت یون کلرید

    ج. مکانیزم های دیگر
    مکانیزم های هیدروژن: 1. تشکیل هیدرید
    مکانیزم های مکانیکی: 1. حرفه های تونلی و پارگی، 2. تاثیر گوه ناشی از محصولات خوردگی

    روش های جلوگیری
    1. کاهش تنش
    2. استفاده از مواد مقاوم تر
    3. حفاظت کاتدی
    4. استفاده از بازدارنده ها
    5. استفاده از پوشش
    6. استفاده از تنش های پسماند فشاری روی قطعه
    طراحی سیستم های آلی ضدخوردگی

    یک پوششمقاوم در برابر خوردگی، اساساً بایستی در برابر اتمسفر خورنده مقاومت کرده و ازرسیدن آن به سطح سازه جلوگیری کند. طراحی یک پوشش ضد خوردگی موثر و مناسب ، کارپیچیده ایست که نیازمند علم وسیعی از جمله اصول خوردگی و ترکیب شیمیایی ساخت وتشکیل فیلم پوشش ضد خوردگی می باشد.
    معمولاً حفاظت از اجسام در برابر خوردگی، توسط پوششهای آلی انجام می شود. این پوششها با توجه به فاکتور های مشخص از جمله خود سازه، جنس سازه، طول عمر سازه،شرایط فرآیندی و سرویس ، شرایط جوی و غیره متغیر می باشند و تفاوت آنها می تواند درنوع رزین، پیگمنت، ضخامت لایه ها، تعداد لایه ها و... باشد. حال با توجه به مسائلفوق در طراحی یک سیستم ضد خوردگی ، موارد فراوانی بایستی مد نظر قرارگیرد.

    سیستم رنگ : به تعدادی از لایه های رنگ که هر کدام نقش مشخص درمحافظت از سطح فلز جسم را دارند، گویند. سیستم رنگ از بخشهای ذیل تشکیل می شود .
    1-آستریPrimer
    2-میانهIntermediate
    3-رویهTop Coat Finishnt
    -آستری ها :
    آستر یک اصطلاح عمومی است که به همه رنگهای ضد خوردگیاتلاق می شود و یکی از مهمترین اجزاء یک سیستم رنگ می باشد. اهداف اولیه یک رنگآستری به شرح ذیل می باشد :

    1-چسبندگی (اتصال قوی به جسم)
    2-پیوستگی یا چسبندگی (بسیار قویداخلی)
    3-خنثی بودن (مقاومت بالا در برابر خوردگی و مواد شیمیایی)
    4-چسبندگی بین لایه ای (چسبندگی قوی به لایهمیانی)
    5-انعطاف پذیریمناسب
    از آنجا که رنگ آستری،پایه ای برای لایه های دیگر سیستم رنگ محسوب می شود، بایستی چسبندگی خوبی به رویسطح جسم داشته باشد. اگر سیستم رنگ از نوع بازدارندهباشد، رنگ آستری بایستی دارای پیگمنت های بازدارنده بوده تا بتواندبا غیر فعال کردنسطح ، میل فلز را نسبت به خوردگی کاهشدهد تا چسبندگی آن بر جسم افزایش یابد. به علاوه این آستری بایستی با رطوبت والکترولیت ورودی از سطح سیستم واکنش دهد تا بتواند بصورت کاتدی از فلز محافظت کند. این دسته رنگها دارای دانسیته یا جرم حجمی بالا می باشد و علت سنگینی آنها، وجودپیگمنت های فلزی است. این رنگها دارای براقیت پایین هستند و دانه بندی و گرایند اینرنگها بالاست تا بتواند سطحی زبر جهت چسبندگی خوب لایه میانی به وجودآورد.

    -رنگهای میانه :
    لایه دوم سیستم رنگ می باشد که معمولاً با ضخامت بالااعمال می شود. ضخامت بالای آن کمک می کند تا از نفوذ آب یا هر عامل خورنده دیگرجلوگیری کند. اهداف مورد نظر که بایستی رنگ میانه، آنها را برآورده سازد به شرح زیراست :

    -ضخامتبالا
    -مقاومت بالایشیمیایی
    -مقاومت در برابرانتقال رطوبت یا بخار آب
    -افزایش مقاومت الکتریکی رنگ
    -چسبندگی خوب به رنگ آستری و رنگرویه
    این رنگها نیمه مات بوده ودارای دانسیته پایین تر ، دانه بندی یا گرایند پایین تر و مقدار رزین بیشتر نسبت بهآستریها می باشند.

    -رنگهای رویه :
    آخرین لایه رنگ در یک سیستم رنگ آمیزی می باشد و اهدافعمل آنها به شرح زیر است :

    1-به عنوان یک لایه مقاوم و سیلر برای سیستمرنگ
    2-لایه مقاوم اولیهدر برابر محیط
    3-مقاومت در برابرمواد شیمیایی، آب و شرایط جوی
    4-ایجاد سطح سخت و مقاوم در برابر سایش و ضربه
    5-به وجود آمدن ظاهر خوب و زیبا
    رنگهای رویه دارای دانسیته پایین، نیمه براق یا براقهستند، دارای میزان کمتری دانه بندی در انواع رنگها می باشند تا سطح صاف و صیقلیایجاد کنند. مقاوم در برابر اشعه UV آفتاب، تغییر رنگ وشرایط نامساعد جوی می باشند.


    فاکتور های موثر در طراحی یک سیستم آلی ضد خوردگی :
    -شرایط آب و هوایمنطقه ؛ که در بر گیرنده وضعیت منطقه از نظر رطوبت، گرما و سرما، آلودگی شیمیایی میباشد.
    -جنس سازه یا جسممورد نظر ؛ جنس و آلیاژ سازه جهت طراحی سیستم رنگ بسیار مهم بوده و تاثیر بسزایی درنوع رنگ اعمالی بر روی آن ، به خصوص رنگ آستری را دارا می باشد.
    -موقعیت سازه درمنطقه ؛ محل قرار گرفتن سازه، تماس با آب شور، شناور یا غرق در آب بودن ، برای مثالپوشش داخل مخازنی که حاوی مواد شیمیایی، حلال ها، آب شور، آب شرب یا نفت خام میباشد، چه از نظر نوع رنگ یا تعداد لایه ها، ضخامت هر لایه، نحوه آماده سازی و کیفیتآماده سازی و غیره.
    -شرایط عملیاتی یاService؛ این شرایط در طراحی سیستم ضد خوردگی برای هرسازه بسیار حائز اهمیت است. از آن جمله می توان به بالا یا پایین بودن دما، نوساندما، نوع مواد در تماس با سازه، احتمال وجود صدمات مکانیکی از جمله ضربه و سایش برروی سازه و بسیاری از فاکتورهای دیگر اشاره کرد.

    اطلاعاتیکه پس از طراحی سیستم رنگ بایستی به همراه آنارائه شوند.
    1-تعداد لایه هایرنگ، شماره های رنگ مربوط به کمپانی مورد نظر، ضخامتهای خشک و تر مورد نظر، دانسیتهرنگ در صورت دو جزئی یا سه جزئی بودن رنگ، زمان خشک شدن سطحی و عمقی تینر مربوط بههر رنگ، زمان مورد نظر بین لایه های رنگ و ...
    2-حداقل درجه آماده سازی سطح مورد نظر بر حسب معیاراستاندارد مشخص مانندNACE.SSPC . ISO و غیره، ساینده مورد نیاز و سایز ساینده، فشار مورد نظر جهت عملآماده سازی سطح، در صورتی که آماده سازی، بلاستینگ باشد.
    3-دستورالعمل آماده کردن رنگ جهت اعمال، از جمله نسبتاختلاط درصد تینر، میکس و همزن.
    4-روشهای پیشنهادی جهت اعمال رنگ، نوع پاشش، دستگاه مورد نظر جهت پاششرنگ، فشار ورودی، فشار مورد نظر در دهانه نازل، نوع نازل پاششو...
    5-خصوصیات رنگمربوطه و یا سایر نکات لازم
    6-پیشگیری های مربوط به ایمنی، خطر در حین آماده سازی سطح، ابزار،تجهیزات، فشار، مواد و گرد و غبار و ....
    7-خطر حریق احتمالی ناشی از رنگ وحلالها
    8-تجهیزات محافظتیافراد
    مروری برخوردگی آلومینیوم

    تهیه کننده: مریم کرمی
    دانشجوی مهندسی متالورژی دانشگاه شهید رجایی

    خوردگی ( Corrosion )
    خوردگی اصطلاحی است که به فسادفلزات از طریق ترکیب فلز با اکسیژن وسایر مواد شیمیایی انجام میشود.

    زنگ زدن ( Rusting )
    زنگ زدن فقط در مورداکسید شدن آهن وآلیاژهای آهنی در هوای خشک یا مرطوب به کار می رود که محصول خوردگیاز جنس هیدرات فریک یا اکسید فریک است .
    اکسید شدن ساده فلزاتسبک
    این فلزات شامل فلزات قلیایی وقلیایی خاکی هستند که وقتی اکسید شوند حجم قشر اکسید تشکیل شده متخلخل بوده و مانعیجهت نفوذ اکسیژن به داخل قشر اکسید نیست و اکسید خاصیت چسبندگی به فلز ندارد. بهطور خاص سدیم وپتاسیم در حرارت های عادی و متعارفی میل ترکیبی شدیدی با اکسیژندارند ولی در درجات حرارت خیلی کم اکسید شدن به تاخیر می افتد و اکسید تشکیل شده دراین حالت خاصیت چسبندگی دارد.

    آلومینیم و آلیاژهایآن
    آلومینیوم ، فلزی نرمو سبک ، اما قوی است، با ظاهری نقره‌ای - خاکستری٬ مات و لایهنازکاکسیداسیونکه در اثربرخورد با هوا در سطح آن تشکیل می‌شود، از زنگ خوردگی بیشترجلوگیریمی‌کند. وزن آلومینیومتقریبأ یک سومفولادیامساست . چکش خوار ، انعطاف پذیر و به راحتی خم می‌شود. همچنین بسیار بادَوام و مقاومدربرابر زنگ خوردگی است. بعلاوه ، این عنصر غیر مغناطیسی ، بدون جرقه ، دومینفلزچکش خوار و ششمین فلزانعطاف‌پذیراست.


    خواصفیزیکی

    حالتماده

    جامد

    نقطهذوب

    933.47 K (1220.58 °F)

    نقطهجوش

    2792 K (4566 °F)

    گرمایتبخیر

    293.4 kJ/mol

    گرمای همجوشی

    10.79 kJ/mol

    فشاربخار

    2.42 E-06 Pa at __ K

    سرعتصوت

    5100 m/s at 933 K



    خواص اتمی

    وزناتمی

    26.981538 amu

    شعاعاتمی (calc.)

    125 (118) pm

    شعاعکووالانسی

    118 pm

    شعاعوندروالس

    اطلاعات موجودنیست

    ساختارالکترونی

    Ne]3 s2 3p1]

    -e بازای هر سطح انرژی

    2, 8, 3

    درجه اکسیداسیوناکسید

    3 (آمفوتریک)

    ساختارکریستالی

    مکعبی face centered



    آلومینیوماز جمله جدیدترین مصالح ساختمانی است که در آغاز قرن 20 یک فلز نسبتا کمیاب بود واین روزها از متداولترین فلزات است که به صورت آلیاژی و غیر آلیاژی به کار می رود .
    ویژگی های عمومی خوردگی :
    آلومینیوم یک فلز پست ( فعال ) است که با محیط اطراف میل ترکیبی شدیدی دارد . یعنی سطح آلومینیوم در معرض هوا بهسرعت از یک لایه نازک اکسید آلومینیوم حدود 0.01 میکرومتر پوشیده می شود که فلز رااز حمله بعدی خوردگی محافظت می کند . معادله زیر به معادله لگاریتمی معکوس معروفاست که در مورد خوردگی و اکسید شدن فلزاتی نظیر آلومینیوم به کار می رود :
    1/y = 1/y0 – k9( Ln[a(t-t0)+1])

    y0 : ضخامت قشر اکسید در بدو آزمایش
    t0 : زمان آزمایش در بدو شروع
    k9 : ثابت
    این معادله در مورد اکسیدشدن آلومینیوم د ردرجه حرارت معمولی و اکسیژن خشک صادق است . هم چنین د راین فلز ودر فلز زیرکونیوم رشد فیلم به روش اکسید شدن آنودیک از این معادله پیروی می کند . وقتی آلومینیوم د رمجاورت اکسیژن خالص و خشک قرار می گیرد بین اکسیژن وآلومینیوم یکنوع پیل الکتریکی موضعی تشکیل می شود که سبب رشد فیلم می شود .
    خوردگی یکنواخت :
    خوردگی یکنواخت فلز آلومینیوم درفضای باز معمولا قابل اغماض است . محلول های دارای PH خارج از دامنه اثر ناپذیری در نمودارپتانسیل PH سبب خوردگی مواد ساختهشده از آلومینیوم می شوند. ملاط تازه تهیه شده هم قلیایی است ولذا خورنده آلومینیوماست از این رو برای اجتناب از گسترش مناطق حک شده در سطح فلز باید مراقبت شود که ازپخش شدن ملاط جلوگیری شود . سطوح آلومینیومی که در تماس با بتون تازه هستند حتما درآغاز زدوده می شوند ولی به زودی با تشکیل اندود آلومینات کلسیم برروی آن ها ازخوردگی بعدی جلوگیری می شود.



    تشکیل حفره :
    در اتمسفرهای باز آلوده ٬ حفره های کوچکی تشکیل می شوند که با چشم قابل رویت نیستند . روی این حفره ها جرم های کوچک محصولات خوردگی معمولا اکسید آلومینیوم و هیدروکسید آلومینیوم هستند ٬ تشکیل می شوند . حفره های کم عمق معمولا اثر چندانی بر استحکام مکانیکی ساختمان ها ندارند ٬ با این وجود جلای درخشنده فلز به تدریج از بین می رود و به جای آن اندود خاکستری – زنگاری محصولات خوردگی ظاهر می شود. اگر اتمسفر حاوی دوده فراوان باشد دوده توسط محصولات خوردگی جذب و رنگ زنگاری تیره ایجاد می شود .
    اگر آلومینیوم به طور دائم در معرض آب قرار گیرد حفره دار شدن آن خیلی جدی خواهد بود . به خصوص اگر آب راکد باشد حضور اکسیژن وکلرید و یا یون های دیگر هالید ها تعیین کننده وجود حمله و شدت حمله خواهد بود . اگر یون های HCO3 و Cu2+وجود داشته باشند خطر حفره دار بودن بیشتر خواهد بود البته مشروط بر این که پتانسیل تشکیل حفره بالا رود . بیرون حفره واکنش کاتدی انجام می گیرد که کنترل کننده سرعت تشکیل حفره است .

  2. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  3. #2
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    مهار خوردگی در سیستم های سه فازی چاهها و لوله های گاز
    خوردگي يكياز مشكلات عمده در صنايع نفت و گاز به شمار مي آيد كه سالانه مبالغ هنگفتي، به خوداختصاص مي دهد. وقفه در توليد، زيان هنگفتي چه از نظر توليد هيدروكربن و چه از نظرهزينه تعميرات در پي خواهد داشت. بنابراين سلامت تجهيزات در طول عمر مفيد آن ها يكمسأله اساسي به نظر مي رسد. استفاده از بازدارنده هاي خوردگي سال هاست كه به عنوانيكي از روش هاي كارآمد در صنايع نفت و گاز به كار گرفته مي شود.بازدارنده ماده اياست كه به تعداد كم به سيستم افزوده مي شود تا واكنش شيميايي را كند يا متوقفكند. بازدارنده هاي مورداستفاده در صنايع نفت و گاز معمولا از نوع تشكيل دهنده لايهسطحي(film former) هستند. اين بازدارنده ها با سطح فلز واكنش مستقيم ندارند و با ايجاد لايه محافظي از موادآلي قطبي برروي سطح فلز، سبب بازدارندگيمي شوند. لايه مولكولي اوليه ممكن است پيوندهاي قوي از طريق تبادلبار الكتريكي با سطح برقرار كند و به صورت شيميايي جذب شود، اما لايه هاي بعدي ازطريق پيوندهاي ضعيف فيزيكي جذب لايه اول مي شوند. وجود گروه هاي بلند هيدروكربني،در مولكول هاي اين بازدارنده يك سد فيزيكي در برابر ذرات خورنده به وجود مي آورد. كاركرد ديگر بازدارنده ها، كاهش قابل ملاحظه جريان الكتريكي از طريق افزايش مقاومتاهمي مي باشد.

    درسال هاي اخير استفاده از روش جديد تثبيتpHدر سيستم هاي مختلفگاز مطرح شده است و براي اولين بار در ايران و در پارس جنوبي فاز دو و سه توسط شركتتوتال (TOTAL FINA ELF) مورد استفاده قرار گرفته است. اساس روشتثبيتpHاستفاده از گليكول مي باشد. گليكول به منظور جلوگيري از هيدراتهشدن به سيستم افزوده مي شود. تثبيت كننده به گليكول غيراشباع افزوده مي شود. اينتثبيت كننده مي تواند آلي يا معدني باشد. اين مواد مقدارpHرا بالا مي برند وسبب تشكيل رسوبات محافظ مي شوند.افزايشpHدر همه نقاط لوله تايك مقدار موردنظر باعث تشكيل يك لايه محافظ و پايدار كربنات آهن يا سولفيد آهن ميشود كه مي توان سطوح داخلي خطوط لوله را در برابر خوردگي محافظتكند. تثبيت كننده در ساحلهمراه با گليكول بازيابي مي شود و دوباره به سمت سكو(PLATFORM) فرستاده ميشود.بعد از آن مقدار كمي افزودني براي پايدار كردن سيستم و حصول محافظت كامل كافياست. در اين مقاله روش هاي مختلف پيش گيري و روش جديد تثبيتpHتشريح مي شود. يادآور ي مي نمايد كه در تدوين اين مقاله آقايان سعيد نعمتي (كارشناس برنامه ريزيمجتمع گاز پارس جنوبي)، دكتر سيروس جوادپور و دكتر عباس علي نظربلند (استاداندانشكده مهندس دانشگاه شيراز) مؤلف را ياري كرده اند.

    روش هاي كنترل خوردگي

    خوردگيدر صنايع گاز به يكي از روش هاي زير كنترل مي شود:

    آلياژهاي مقاوم به خوردگي
    بازدارنده هاي خوردگي
    روش تثبيت
    آلياژهاي مقاوم به خوردگي

    استفاده ازآلياژ مقاوم به خوردگي در خطوط لوله به هيچ صورت مقرون به صرفه نمي باشد. عليالخصوص در مورد لوله هاي طويل و بزرگ كه مشكلات جوش و اتصالات نيز وجود دارد. اينروش فقط در موارد خاص در خطوط لوله انتقال گاز به كار مي رود.براي كنترل خوردگيداخلي خطوط لوله از جنس فولاد كربني در يك سيستم چند فازي دو روش ديگر را مي توانبه كار برد.

    بازدارنده هاي خوردگي

    از جمله راه هايكاهش خوردگي استفاده از بازدارنده هاي خوردگي است. بازدارنده ماده اي است كه بهمقدار كم به سيستم افزوده مي شود تا واكنش شيميايي را كند يا متوقف كند. وقتي يكبازدارنده خوردگي به محيط خورنده اضافه مي شود سرعت خوردگي را كاهش مي دهد يا بهصفر مي رساند.اولين بار يك بازدارنده معدني به آرسنيت سديم براي بازدارندگيفولادهاي كربني در چاه هاي نفت مورد استفاده قرار گرفت تا از خوردگيCO2جلوگيري كند، اما به دليل پايين بودن بازده، رضايت بخش نبود، درنتيجه ساير بازدارنده ها مورد استفاده قرار گرفتند.در سال هاي 1945 تا 1950 خواصعالي تركيبات قطبي با زنجيره هاي بلند كشف شد. اين كشف روند آزمايش هاي مربوط بهبازدارنده هاي آلي مورد استفاده در چاه ها و لوله هاي نفت و گاز را دگرگون ساخت.اينبازدارنده ها از طريق ايجاد يك لايه محافظ سطحي مانع از نزديك شدن ذرات خورنده بهسطح فلز مي شوند. به اين نوع بازدارنده ها لايه ساز يا تشكيل دهنده سطحي (filmforming) مي گويند كهاغلب پايه آميني دارند.

    خصوصياتبازدارنده هاي خوردگي

    خصوصياتي ازبازدارنده هايي كه بر عملكرد و كارآيي آن ها تأثير مي گذارند شامل موارد زير است:

    1-
    سازگاري با ديگر مواد شيميايي: از آن جايي كه در سيستم هاي گازي ممكن استدو يا چند ماده شيميايي مورد استفاده قرار گيرد، لذا بازدارنده نبايد باعث اثراتجانبي بر روي آن ها شود (براي مثال مواد ضد كف و ضد امولسيون به همراه بازدارندههاي خوردگي در صنايع گاز به كار رود).
    2-
    كارايي در شرايط تنش برشي بالا: گاهياوقات خروج از گاز چاه يا خطوط لوله تنش برشي بالايي به وجود مي آورد، به همين دليلمقاومت فيلم محافظ در برابر تنش برشي از اهميت فراواني برخوردار است و بايستي موردبررسي قرار گيرد.
    3-
    پايداري در برابر دما و فشار بالا: محدوده دما و فشار درچاه ها و مخازن گاز و لوله ها بالاست و بازدارنده بايد بتواند اين دما و فشار راتحمل كند و در اين شرايط پايداري و كارايي خود را از دست ندهد.
    4-
    پايداري فيلممحافظ با گذشت زمان: اين فاكتور،تعيين كننده روش اعمال بازدارنده و مقدار آن ميباشد.
    5-
    تشكيل امولسيون: تشكيل امولسيون يكي از بزرگترين مشكلات بازدارنده هاينفت و گاز مي باشد. بازدارنده هاي لايه ساز شامل مولكول هاي فعال سطحي هستند وتشكيل امولسيون را تشديد مي كنند.
    6-
    حلاليت بازدارنده: بيشتر روش هاي اعمالبازدارنده ها شامل رقيق كردن بازدارنده با يك حلال مناسب آلي يا آبي مي باشد.
    7-
    سميت: به كار بردن بازدارنده ها نبايد محيط زيست را دچار آلودگيكند.

    روش هاي اعمالبازدارنده ها:

    روشناپيوسته
    روش پيوسته
    روشSqueeze
    روشناپيوسته در مخازن گازي به دو صورت انجام مي گيرد:

    الف- روشShort Batch: در اين روش مواد بازدارنده خوردگي در يك حلال مناسب (آلي يا آبي) حل و با شدت مشخص به داخل لوله مغزي پمپ مي شود.محلول بازدارنده در بالاي لوله مغزييك پيستون تشكيل مي دهد.
    ب-روشFull TubingDisplacement: در اينروش چاه بسته مي شود و محلول بازدارنده رقيق شده با حلال مناسب تزريق مي گردد ومعمولا به همراه سيال مناسبي مثل گازوئيل يا گاز نيتروژن جا به جا مي شود و به طرفپايين مي رود. پايين رفتن ستوني محلول باعث آغشته شدن كل سطح مي شود. اين روش نسبتبه روش قبل كم هزينه تر است.

    روشپيوسته

    مهمترين عامل در تعيين و انتخاب روش تزريق نوعتكميل چاه مي باشد. در زير به چند نوع تكميل چاه اشاره مي شود: الف-Dual Completion: در اين نوع تكميل، دو لوله مغزي به صورت موازييا متحدالمركز در چاه رانده مي شود كه لوله با قطر كمتر به منظور تزريق بازدارندهخوردگي استفاده مي شود. سرعت تزريق ماده به گونه اي درنظر گرفته مي شود كه ازبازگشت محلول بازدارنده به سمت بالا جلوگيري شود.
    ب-Capillary or Small Bore Tubing: در نوع تكميل چاه يك لولهبا قطر كم به موازات لوله مغزي در فضاي بين لوله مغزي و ديواره رانده مي شود كهتزريق بازدارنده از اين مسير انجام مي گيرد.
    ج-Side Pocket Mandrel Valve: در اين نوع تكميل فضاي بينلوله مغزي و ديواره كهannulusناميده مي شود، از بازدارنده پر مي شود درحالتيكه فشار برروي ستون مايع از فشار لوله مغزي بيشتر شود بازدارنده به داخل لوله مغزيتزريق مي گردد. از معايب اين روش طولاني بودن زمان ماند بازدارنده در فضاي بينديواره و لوله مغزي مي باشد.
    د-Low Cost Completion:در اين نوع تكميل فضاي بين ديواره و لوله مغزيتوسط پمپ سر چاه از بازدارنده پر مي شود و از طريق سوراخ هاي روي لوله مغزي كه كميبالاتر ازPackerوجود دارد، محلول به داخل لوله مغزي تزريق مي گردد. در اين نوعتكميل، بازدارنده بايد از پايداري حرارتي بالايي برخوردار باشد.
    هـ-Packerless Completion: در اين نوع تكميل چاهPackerوجود ندارد و در نتيجه فضاي حلقوي به لوله چاه ارتباط دارد و تزريقاز محل سرچاه به داخل فضاي حلقوي و در نهايت در لوله مغزي صورت مي گيرد. پايداريحرارتي بازدارنده با توجه به زمان ماند طولاني و مشكلات عملياتي در پمپ هاي تزريقاز مشكلات اين نوع تكميل مي باشد.

    روشSqueeze:

    دراين روش پس از بستن چاه،محلول بازدارنده با فشار از طريق لوله مغزي به درون چهاپمپاژ مي شود. هدف اين است كه محلول بازدارنده به درون خلل و فرج سازند نفوذ كند. اين روش در چاه هاي با نوع تكميل مختلف مي تواند استفاده شود. دوره هاي تزريق بستگيبه نوع بازدارنده، طبيعت سازند و سرعت توليد دارد. چاه پس از عمليات تزريق در مدارتوليد قرار مي گيرد. در ابتدا غلظت بازدارنده در گاز توليدي زياد است و در همينفاصله زماني است كه فيلم محافظ روي سطح تشكيل مي شود. پس از مدتي غلظت بازدارندهكاهش مي يابد بنابراين در ادامه توليد فيلم محافظ تقويت و ترميم مي شود.
    روش تثبيتpH

    تاريخچه روش تثبيتpH
    تكنيكتثبيتpHدر دهه هفتاد ميلادي از يك مشاهده ساده سرچشمه گرفت. در آن سال هامشاهده شد كه درواحدهاي دهيدارته سازي گاز گليكول را به كار مي برند، به ندرتخوردگي چشمگيري مشاهده مي شود. علت اين امرpHبالاي آن واحدهابود. به نحوي كه لايه هاي تشكيل شده سطوح را محافظت مي كردند. مطالعات و آزمايش هايبعدي نشان دادند كه مي توان اين روش را جايگزين استفاده از بازدارنده هاي خوردگيكرد. در راستاي برنامه هاي تحقيقاتي، اين روش براي اولين بار در سن جورجيو درايتاليا مورد استفاده قرار گرفت. گاز اين ميدان شيرين (فاقدH2Sو فقط شامل (CO2بود. اين روش در ميدان مذكور با موفقيت روبه رو شد.در دهه هشتادميلادي اين روش در ميدان هاي گاز شيرين به صورت روش مكمل مورد استفاده قرار گرفت. در دهه نود نياز به پرداختن به اين روش به عنوان يك تكنيك ديده مي شد. بنابراين دركنفرانس بين المللي انستيو خوردگي موسوم بهNACEشركت هاي بزرگنفتي شاملTOTAL FINA, STATOLLت,AGIP BPت,SHELLوELFيك پروژه تحقيقاتي را در انستيو انرژي نروژ(IFE) راه اندازي كردند. اولين فاز اين پروژه اثبات كارايي تثبيتpHبه عنوان يك روشكنترل خوردگي در خطوط لوله چند فازي گاز شيرين بود. براساس اين نتايج و هم چنينآزمايش هاي مختلف، استفاده از بازدارنده هاي خوردگي در سيستم هاي شيرين (فاقدH2S) كاملا منحل اعلام شد. در دهه هشتاد و نود ميلادي، شركت توتالTOTAL ,FINA, ELFتعداد زيادي از ميدان ها را در نروژ و هلند با به كاربردن روشتثبيتpHمحافظت كرد. روش تثبيتpHامروزه كاملا شناختهشده است و براي سيستم هاي گاز شيرين كه در آن ها گليكول مصرف مي شود، به كار ميرود.كاربرد اين روش براي سيستم هاي ترش، نسبتا جديد مي باشد. در سال 1998 آزمايشهاي كيفي انجام شده توسط شركت توتال درIFEروش تثبيتpHرا براي دو خط لوله گاز 105 كيلومتري 32 اينچي دريايي در پارس جنوبي در ايرانانتخاب كرد. اين خطوط يك سال است كه راه اندازي شده اند.

    جنبه هاي تئوري حفاظت و كنترل

    مكانيزم كلي تثبيتpHبراساس به كار بردنيك باز قوي به عنوان تثبيت كننده براي افزايشpHدر همه نقاط لوله ميباشد. رسيدن به اين هدف به كمك طيف وسيعي از مواد شيميايي بازي چه از نوع آلي (MDEA, MBTNa) و چه از نوع معدني (NaCO3, NaOH, KOH) ميسر مي شود.اين بازها اسيديتهحاصل از گازهاي اسيدي راH2S, CO2كاهش مي دهند. درنتيجه اسيديته سيال در اثر توليد آنيون هاي بي كربنات و بي سولفيد كاهش مي يابد. دراثر افزايش مقدار بي كربنات و بي سولفيد، محصولات خوردگي درpHموردنظر بر روي سطحفلز شكلمي گيرند و يك حفاظتپايدار در برابر ذرات خورنده به وجود مي آورند.

    فاكتورهاي كليدي محافظت در سيستم هاي شيرين

    اولين تحقيقات در موردكارايي اين روش بر روي سيستم هاي شيرين انجام گرفت.هدف اين برنامه بررسي كاراييانواع تثبيت كننده هاي آلي و معدني شامل اندازه گيري خوردگي در حلقه جريان (Flow Loop) و سلول شيشه اي (glass cell) و هم چنين بررسي دقيق خصوصياتلايه هاي خوردگي تشكيل شده برروي سطح فلز بود. زيرا اين لايه ها فاكتورهاي كليدي درمهار خوردگي هستند. نتايج اين تحقيقات در زير آمده است.
    -
    كارايي روش تثبيتpHبستگي به محافظت لايه هاي محصولات خوردگي دارد.
    -
    در شرايط شيرين لايه محصول خوردگي كربنات آهن ميباشد. مقدار محافظت اين لايه و زمان لازم براي دستيابي به محافظت كامل، به دوپارامتر زير بستگي دارد:

    #
    pHمحل موردنظر (بستگي به فشار جزييCO2وغلظت تثبيت كننده دارد)
    #
    دما: سريع ترين تشكيل لايه محافظ در بالاترين دما صورت مي گيرد و طولاني ترين زمان برايتشكيل لايه محافظ در دماي كمتر از 40 درجه سانتي گرادمي باشد.
    -
    ديگر پارامترها، مثل شرايط اوليهسطح فلز و مقدار آهن حل شده در سيال به عنوان فاكتورهاي ثانويه معرفي شده اند. وبرسينتيك تشكيل لايه ها اثر گذارند.
    -
    pHمحل برابر با 6.5محافظت را در شرايط شيرين به طور كامل تضمينمي كند.
    -
    تثبيتكننده هاي آلي و معدني كارايي يكساني را از نقطه نظر خوردگيايجادمي كنند هر دو آنيونهاي بي كربنات و كربنات مي سازند و انتخاب آن ها براساس شرايط محيطي، در دسترس بودنو ايمني مي باشد.

    فاكتورهاي كليدي محافظت در سيستم هاي ترش :

    اساس روش تثبيتpHدر محيط هاي حاويH2S (محيط هاي ترش) مشابه با محيط هاي شيرين (فاقد(H2Sمي باشد. اما تفاوت هاي اساسي زير را بايد درنظر گرفت:

    -
    در محيط هاي ترش هم مشابه محيط هاي شيرين تشكيللايه محافظ محصولات خوردگي اساس محافظت مي باشد.
    -
    به دليل حلاليت بسيار كمسولفيد آهن، در مقايسه با كربنات آهن، (هزار برابر كمتر) لايه سولفيد آهن محافظتبهتري نسبت به كربنات آهن دارد و به محض اين كه مقاديرH2Sبه ميزان لازمبرسد، لايه سولفيد آهن تشكيل مي شود. سولفيد آهن بسته بهpHو دما، در انواع شكلهاي كريستالي (مكنويت، پيروتيت و پيريت) تشكيل مي شود. اين سولفيد ها درpHمشخص، قابليت حفاظت مختلفي دارند.
    -
    با توجهبه تأثير دما كمترين محافظت در محدوده 60 تا 70 درجه سانتي گراد وجود دارد. در ايندما و درpHهاي كم، تمايل به حفره دار شدن در فولاد ديده مي شود بنابراين كنترلpHدر اين دما حياتي است. درpHبرابر با 60 تا 70 درجه سانتي گراد (بحراني تريندما) هيچ تمايلي به خوردگي ديده نمي شد و لايه هاي سولفيد آهن هم بيشترين حفاظت رادر همينpHداشتند.
    -
    همانطور كه انتظار مي رود، سرعت جريان سيال تأثيري بر كيفيت محافظت در كل طول لولهندارد.

    پايش خوردگي در روش تثبيتpH

    پايشخوردگي (CorrosionMonitoring) از طريقبررسي مداومpHصورت مي گيرد. مقدارpHنبايد كمتر از حدموردنظر باشد. در صورت مناسب بودن مقدارpHمي توان از محافظتدر كل خط لوله اطمينان حاصل كرد. با استفاده از پروبpHمي توان مقدارpHرا بررسي كرد. اين راه حل فوق العاده است. زيرا پايش به صورت اتوماتيك انجام ميگيرد. اما كاربرد اين پروپ ها در سيستم هاي ترش توصيه نمي شود. بنابراين شركتتوتالpHمحيط را از طريق بررسي آب گليكول دار در شرايط آزمايشگاهي (فشارbar 1گازCO2 ) ارزيابي مي كند.
    pHمخلوطMEGو آب از طريق معادله زير محاسبه مي شود.
    pH=K+Log[pHstab]-Log(p*%CO2+%H2S)
    Kثابت جدايش است كه به مقدار گليكول بستگيدارد.
    Pفشار كل گاز
    [
    pHstab] غلظت تثبت كننده با واحد مول بر ليتر در اندازهگيري در شرايط آزمايشگاهي مذكور معادله به اين صورت تغيير مي كند.
    pH=(1bar CO2)=K+Log(pHstab)
    سپسمقادير به دست آمده در آزمايشگاه از طريق معادله زير بهpHمحيط تبديل مي شود.
    pH=(1bar CO2)-Log(P*(%CO2+%H2S)
    هم چنينپايش خوردگي با استفاده از كوپن ها و پروب هاي الكتريكي در موقعيت ساعت شش در وروديو خروجي خطوط انجام مي گيرد.

    نتيجه گيري

    روش تزريق بازدارندهبه عنوان يكي از روش هاي كنترل خوردگي از ديرباز در صنايع گاز مورد استفاده قرار ميگرفته است. در زير به مقايسه اين روش با روش تثبيتpHمي پردازيم:

    در شرايطي كهMEGدر سيستم به كار نمي رود و مشكلات هيدارته شدنوجود ندارد، استفاده از يك تثبيت كنندهpHو بازيابي آن درانتهاي خط لوله مقرون به صرف نمي باشد.
    اطمينان ازمحافظت خط لوله در روش تثبتpHنسبت به تزريق بازدارنده بيشتر است، زيرا مقدارpHدر كل خط لوله در حد تشكيل محصولات خوردگي مي باشد.
    در موارديكه چاه هاي گاز دريايي هستند، تزريق بازدارنده برروي سكو نيازمند افرادي براي تعميرو نگه داري پمپ هاي تزريق مي باشد. در صورتي كه در روش تثبيتpHسكو بدون سكنه رهامي شود و عمليات از ساحل كنترل مي شود.
    در روشتثبيتpHدر تجهيزات بازيابيMEG، مقادير زيادي نمكو رسوب كربناتي به وجود مي آيد كه بايستي با استفاده از مواد ضد رسوب در اينتجهيزات آنها را كنترل كرد.
    كنترل منظمpHدر خطوط لوله و بررسي مقادير گازهاي اسيدي، در روش تثبيتpHضروري است در حاليكه در تزريق بازدارنده نيازي به اين كار نيست.
    ايجاد كف،تشكيل امولسيون و تجزيه حرارتي بازدارنده ها و بررسي كنترل كيفيت آن ها، قسمت عمدهفعاليت هاي آزمايشگاه هاي هر ميدان است كه در روش تثبيتpHبه طور كامل حذف ميشود. انتخاب يك روش مناسب كنترل خوردگي، بستگي به شرايط محيطي و نكات مذكور دارد وبا توجه به آزمايش هاي مختلف انجام مي گيرد.

  4. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  5. #3
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    حفاظت كاتدي خطوط لوله
    اصول خوردگي براساس خواص فعل و انفعالات الكتروشيميايي است كه در آند توليد الكترون و در كاتد مصرف الكترون صورت مي پذيرد. واكنش هاي الكترو شيميايي انحلال فلز و آزاد شدن گاز هيدروژن ، بر طبق معادلات زير است :

    M → Mn+ + ne
    2H+ + 2e → H2

    در پروسه خوردگي لوله مدفون درخاك ، نقاط آندي و كاتدي در هر حال موجود هستند و با انتقال جريان الكتريسيته از نواحي آندي از فلز به محيط اطراف خوردگي رخ مي دهد و در نقاط كاتدي كه جريان از محل اطراف به فلز مي رسد خوردگي صورت نمي گيرد. به همين دليل فلز را مي توان به طور جزئي بوسيله استفاده از پوشش ها حفاظت نمود. اگر پوشش ها دائمي بودند و هنگام نصب و يا كار آسيب نمي ديدند لوله هاي فلزي هرگز خورده نمي شدند. پيدايش عيوب در لايه هاي محافظ يا وجود سوراخ ها، حتي اگر اتفاقي باشد ما را ملزم مي كند كه حفاظت نوع دومي را هم براي فلزات مدفون در خاك بكار بريم. روش عمومي استفاده از حفاظت كاتدي است.
    در اين روش با وارد شدن يك پتانسيل كاتدي ، قطعه مهندسي به يك كاتد ( قطب منفي) تبديل مي گردد؛ در حقيقت جريان از طرف محيط به تمام سطح لوله مي رسد پس در حقيقت ديگر خوردگي نخواهيم داشت و لوله محافظت مي گردد.
    حفاظت كاتدي را ميتوان به تنهايي هم بكار برد ولي به مقدار جريان زيادي نياز است. بنابراين بهترين روش آن است كه از يك لايه محافظ مناسب استفاده كرد و بعدا بوسيله حفاظت كاتدي آنرا تقويت نمود.
    همانگونه كه در ابتدا مطرح شد اصول خوردگي براساس خواص فعل و انفعالات الكتروشيميايي است كه در آند توليد الكترون و در كاتد مصرف الكترون صورت مي پذيرد. واكنش هاي الكترو شيميايي انحلال فلز و آزاد شدن گاز هيدروژن ، بر طبق معادلات زير است :


    M Mn+ + ne

    2H+ + 2e H2

    در پروسه خوردگي لوله مدفون درخاك ، نقاط آندي و كاتدي در هر حال موجود هستند و با انتقال جريان الكتريسيته از نواحي آندي از فلز به محيط اطراف خوردگي رخ مي دهد و در نقاط كاتدي كه جريان از محل اطراف به فلز مي رسد خوردگي صورت نمي گيرد. به همين دليل فلز را مي توان به طور جزئي بوسيله استفاده از پوشش ها حفاظت نمود. اگر پوشش ها دائمي بودند و هنگام نصب و يا كار آسيب نمي ديدند لوله هاي فلزي هرگز خورده نمي شدند. پيدايش عيوب در لايه هاي محافظ يا وجود سوراخ ها، حتي اگر اتفاقي باشد ما را ملزم مي كند كه حفاظت نوع دومي را هم براي فلزات مدفون در خاك بكار بريم. روش عمومي استفاده از حفاظت كاتدي است.
    در اين روش با وارد شدن يك پتانسيل كاتدي ، قطعه مهندسي به يك كاتد ( قطب منفي) تبديل مي گردد؛ در حقيقت جريان از طرف محيط به تمام سطح لوله مي رسد پس در حقيقت ديگر خوردگي نخواهيم داشت و لوله محافظت مي گردد.
    حفاظت كاتدي را ميتوان به تنهايي هم بكار برد ولي به مقدار جريان زيادي نياز است. بنابراين بهترين روش آن است كه از يك لايه محافظ مناسب استفاده كرد و بعدا بوسيله حفاظت كاتدي آنرا تقويت نمود.

    حفاظت كاتدي به دو شيوه اعمال مي گردد:

    1- جريان اعمالي Impressed current

    2- آند فدا شونده sacrificial anode

    حفاظت کاتدي بوسيله جريان اعمالي:
    حفاظت از اين طريق در حقيقت ساخت و کنترل يک سلول خوردگي بزرگ است. در اين سلول پايانه منفي جريان مستقيم به خط لوله و پايانه مثبت به يک رساناي مصرف شدني دفن شده وصل مي شود و اين رسانا آند ناميده مي شود. جريان مستقيم معمولا از طريق يک يکسو کننده به لوله وارد مي گردد و در حقيقت يک مدار الکتريکي بوسيله عبور جريان توسط خاک از آند به خط لوله به وجود مي ايد. ( شكل 1)
    در حقيقت سرمايه گذاري براي تاسيسات حفاظت کاتدي ، بخش کوچکي از هزينه کل تجهيزات است برخلاف حفاظت بوسيله پوشش ها ، تداوم هزينه ها براي تجهزات و کنترل وجود دارد ؛ در حقيقت اين بحث شامل اندازه گيري و برآورد تجهيزات ، طراحي و نصب آنها ، اندازه گيري و تفسير نتايج بدست آمده و سپس تعمير و نگه داري است.



    شكل 1 - نمايي شماتيك از سيستم حفاظت كاتدي
    فاکتو رهاي مورد نظر جهت طراحي سيستم حفاظت کاتدي:
    عواملي که بايد مد نظر قرار گيرند عبارت اند از:

    1- اندازه پتانسيل : که با توجه و با استفاده از دياگرام ايوانز آن چنان اختيار مي شود که فلزات متفاوت در ناحيه کاتدي حفاظت مي گردند. ( شكل 2)

    2- جريان مدار: شدت جريان ( آمپر) مورد نياز جهت رسيدن به پتانسيل حفاظت کننده مي بايستي محاسبه شود.

    3- فاصله بسترهاي آندي : هر قدر که فاصله آندها از قطعه بيشتر باشد جريان بيشتري در مدار مي بايست تزريق گردد تا حفاظت کامل تري صورت پذيرد.

    نزديکي بيش از حد آند به قطعه از رسيدن جريان به تمامي سطح ( بخصوص طرف پشت قطعه ) جلوگيري خواهد نمود.

    4-احتمال بکار گرفته شدن پوشش هاي حفاظتي و تاثير آنها بر طراحي سيستم حفاظت کاتدي

    5- اندازه هاي قطعه مهندسي ، طول قطر، طول يا عرض جهت محاسبه سطح و در نتيجه اندازه مقاومت الکتريکي آن

    6- نوع و جنس خاک ، به لحاظ خواص شيميايي و تعيين مقاومت آن اهميت خاص دارند.

    7- احتمال وجود جريان هاي ناخواسته ( سرگردان) جريان هاي القائي که بنا بر عبور برق فشار قوي از نزديکي قطعه مهندسي و يا وجود ترانس ها و ديگر دستگاه ها ايجاد مي گردد.



    شكل 2- دياگرام ايوانز

    رابطه مقاومت ، جريان و پتانسيل با يکديگر:
    با فرض اينکه قطعه مهندسي ، خاک و يا سيال هر يک داراي مقاومت الکتريکي خاص خود هستند ، هر گاه جريان حفاظتي با استفاده از يک منبع تغذيه و يا آند فدا شونده برقرار گردد ، در نزديکي آند مقاومت كمتري بوجود آمده ، شدت جريان بيشترين خواهد بود. لذا هر قدر که از منبع آندي دورتر شويم مقاومت الکتريکي افزايش يافته جريان کمتر خواهد شد ، در نتيجه حفاظت کامل نخواهد بود اين پديده را اصطلاحا ( افت ولتاژ) مي نامند ، اگر ولتاژ به اندازه اي افت نمايد که از ناحيه حفاظت کاتدي ( ايوانز) خارج شود ديگر حفاظتي صورت نمي گيرد. همين پديده را مي توان با استفاده از يک مدار مقاومتي نشان داد که جريان در مقاومت هاي نزديک به بستر آندي بيشترين خواهد بود ( شکل 3). شدت جرياني که از واحد سطح زمين و در نزديکي بستر آندي خارج مي شود ؛ به مراتب از شدت جريان عبوري در فواصل دورتر از آند بيشتر است. در نتيجه به ازاي بعد مسافت، جريان کاهش خواهد يافت ، اين پديده باعث افت پتانسيل مي شود ( با فرض مقاومت ثابت ). شكل4



    شكل 3 - افت ولتاژ و عدم حفاظت كاتدي بعد از 15 متر فاصله از آند ( لوله بدون پوشش )


    شكل 4- رابطه افت پتانسيل نسبت به فاصله از بستر آندي

    مقدار افت پتانسيل نسبت به فاصله قابل اندازه گيري است :


    پتانيسل (v) = v
    جريان( A) = I
    مقاومت خاک ( Cm. Ω) = ρ
    طول آند ( ft ) = y
    فاصله از آند ( ft ) = X

    هر گاه X>10Y گردد فرمول فوق به ذيل تبديل مي شود:


    در سيستم حفاظت کاتدي به روش آند فدا شونده اين افت پتانسيل نيز مي بايستي در نظر گرفته شود هر چند که آند معمولا از قدرت کمتري برخوردار است.
    مقدار جريان لازم از فرمول V = IR محاسبه مي شود. مقدار جريان مورد نياز براي حفاظت واحد سطح از يک لوله فولادي بدون پوشش متغير است. که وابسته به نوع خاکي که در آن لوله قرار گرفته است و همچنين تجربه مي توان يک مقدار متوسط و معين را بکار برد. مقادير جدول 1 نشان مي دهد که پوشش ها ، حتي پوشش هاي ضعيف ، تفاوت چشمگيري در ميزان جريان ايجاد مي کنند.

    جريان لازم برحسب A
    مقاومت پوشش به ازاي يك ft2 برحسب Ω
    500
    14.91
    5.964
    2.982
    1.491
    0.2982
    0.1491
    0.0298
    0.000058
    لوله بدون پوشش
    10000
    25000
    50000
    100000
    500000
    1000000
    5000000
    پوشش ايده آل


    جدول 1- جريان مورد نياز براي محافظت لوله پوشش شده
    اندازه گيري پتانسيل و شدت جريان:
    صحت حفاظت کاتدي و مقدار پتانسيل قطعه مهندسي با استفاده از ولت متر نسبت به الکترود مرجع (Cu/Cu SO4) سنجيده مي شود. شکل ( 5 و 6)

    شكل 5 - الکترود مرجع (Cu/Cu SO4)


    شكل6 - اندازه گيري پتانسيل خط لوله

    براي اين کار ابتدا بر روي زمين مقداري آب ريخته تا سطح زمين كاملا خيس شود، سپس نيم سلول Cu/Cu SO4 را بر روي آن قرار مي دهيم. يک سر ولت متر را به نيم سلول و سر ديگر آنرا به خط لوله وصل مي کنيم. پتانسيل اندازه گرفته شده بايد بيشتر از mv850- باشد ؛ چون نقاطي که پتانسيل کمتر mv 850- دارند ديگر حفاظت نمي شوند. جهت حفاظت از خوردگي لوله هاي فولادي نو مدفون شده درخاک بوسيله اندازه گيري به شيوه فوق بعضي اعمال جريان مستقيم تا رسيدن به پتانسيل مورد نظر جهت حفاظت يعني بالاتر از mv 850- صورت مي پذيرد. که جريان مورد نياز در اين خصوص فقط حدود A/ft2 100 است.

    در بسياري از موارد مدار الکتريکي محافظت کننده به شکل يک مدار باز با صرف جريان بيش از حد معمول عمل مي نمايند (Current Drainage) اين بنابر دلايل عديده اي همانند ايجاد لايه هاي اکسيدي ناخواسته ، اتصال پيش بيني نشده ، القاي جريان هاي سرگردان و غيره صورت مي گيرد. جهت کشف اين موضوع که ايا حفاظت به روش کاتدي موثر افتاده است و يا خير طبق شکل 7 از دو الکترود مرجع Cu/Cu SO4 به همراه دو ولت متر استفاده مي شود که در يک نقطه به لوله متصل مي گردند. اگر اختلاف پتانسيل اندازه گيري شده توسط دو دستگاه ولت متر بيشتر از 5 باشد. حفاظت به طورکامل انجام نمي پذيرداما برعکس اگر کمتر باشد حفاظت از خوردگي کامل خواهد بود.


    شكل 7 - شيوه اندازه گيري براي حصول اطمينان از حفاظت كامل كاتدي

    جريان خروجي از آند را مي توان بوسيله معادله دوايت بدست آورد.
    I = جريان خروجي (A)
    E = ولتاژ آند (v)
    L = طول آند (cm)
    ρ = مقاومت خاک
    D= قطر آند

    شكل 8 - افزايش شدت جريان در نزديك ترين نقاط به آند
    اندازه گيري مقاومت زمين :
    خاک هايي که داراي ضريب مقاومت الکتريکي بالايي هستند از شدت جريان خوردگي پاييني برخوردار هستند. و اما نقاطي که داراي پتانسيل بالايي هستند داراي مقاومت الکتريکي پاييني هستند. چرا که در آنها شدت جريان خوردگي بالاست. بررسي ضريب مقاومت الکتريکي خاک مي تواند راهنماي خوبي جهت تعيين مکان کار گذاردن بستر آندي و عمق آند از سطح زمين باشد. جهت اندازه گيري مقاومت خاک از روش چهار ميله ونر استفاده مي شود ، شکل 9 نشان مي دهد که 4 ميله به صورت عمودي در خاک قرار مي گيرند. دو ميله 1و2 با استفاده از يک منبع تغذيه ، جرياني را به درون خاک مي فرستند و دو ميله ديگر 3و 4 ولتاژ اندازه گيري مي کنند.



    شكل9- دستگاه اندازه گيري مقاومت الكتريكي خاك موسوم به 4 ميله ونر

    فاصله ميله ها از يکديگر معادل عمق آنها از سطح خاک است و برابر مقدار a مي باشد. نهايتا مقاومت خاک با استفاده از فرمول زير محاسبه مي شود:



    که اگر مقدار A برابر 2½" و 5ft فرض شود :




    که براي مثال اگر جهت حفاظت از خوردگي يک لوله زير زميني از0.22 A i = استفاده شود خواهيم داشت:




    در امتداد طول لوله و با استفاده از روش 4 ميله ونر مقاومت اندازه گيري گرفته شده يکنواخت نخواهد بود. کيفيت شيميايي خاک با تغيير دادن مقاومت الکتريکي آن نيز بر خوردگي تاثير مي گذارد. ( شكل 10)



    شكل10 - تغيير مقاومت خاك در طول مسير يك خط لوله

    در يک سيستم حفاظت کاتدي و زماني که قطعه مهندسي به قطب منفي تبديل شده است. نقش خاک ارائه دادن انتقال آسان کاتيون ها است که هر قدر که شدت انتقال اين يونها بيشتر باشد. جريان الکتروني بيشتري به سمت لوله کشيده مي شود ( از طريق منبع تغذيه و سيم رابط ) با کاهش PH خاک ، شدت جريان بيشتري براي رسيدن به پلاريزاسيون کاتدي و حفاظت از خوردگي نياز دارد. جهت اندازه گيري PH خاک و يا ديگر الکتروليت ها از PH متر و يا کاغذ معرف استفاده مي شود.
    طراحي بستر آندي و نصب ايستگاه حفاظت:
    جهت طراحي يک بستر آندي مناسب مي بايستي فاکتورهاي ذيل را مد نظر قرار داد.

    1- مقدار ضريب مقاومت خاک( برحسب Ω.cm)

    2- وجود شبکه هاي فلزي که در حيطه موثر بستر آندي واقع گرديده اند.

    3- فاصله بستر آندي تا لوله و ديگر قطعاتي که جداگانه حفاظت مي گردند.

    4- موجوديت برق مستقيم جهت اعمال جريان حفاظتي

    5-بررسي لجستيکي به لحاظ موقعيت قطعات ودستگاه هايي که مي بايست حفاظت گردند.

    همچنين در مورد پياده سازي يک ايستگاه نکات زير بايد تعيين شود:

    1- انتخاب دانستيه جريان لازم

    2- محاسبه سطح فولادي که مي خواهيم حفاظت کاتدي گردد.

    3- محاسبه جريان مورد نياز

    4- محاسبه مجموع آند هاي مورد نياز براي ضمانت يک عمر مورد نياز مثلا 20 سال

    5- محاسبه مقاومت کل مدار شامل مقاومت آند ها نسبت به الکتروليت ، مقاومت کابل هاي استفاده شده و مقاومت سازه به الکتروليت و مقاومت الکتروليت

    6-محاسبه سايز رکتيفاير مورد نياز

    بعد از محاسبات لازم بر طبق اصول بالا ، مکان دقيق حفره مشخص مي شود ، اولين مرحله در ايجاد حفره عمليات حفاري است ، هر چه مکان حفره دورتر از خط لوله باشد طول بيشتري از لوله مورد حفاظت قرار ميگيردبه طور معمول بين حفره تا خط لوله 100تا 200متر فاصله است. ( شكل 11 )



    شكل 11- مشكلات بوجود آمده در صورتي كه آند به حفره نزديك باشد

    بستر آندي مي تواند به سه صورت طراحي شود. که هر کدام مزايا و معايبي دارند. درحالت اول بستر موازي با خط لوله است و در حالت دوم بستر عمود بر لوله مي باشد حالت سوم نيز ترکيبي از دو حالت بالا است. که مزاياي حالت سوم بيشتر است و معمولا حفره را به صورت زاويه دار طراحي مي کنند. درحقيقت در حالت اول مصرف آندها زياد است و همان طور که در شکل 12 آمده است گراديان هاي جريان تمرکز بيشتري در ناحيه آند دارند.


    شكل 12 - گراديان جريان در يك بستر موازي

    با توجه به تعداد آند مورد نياز براي هر حفره طول حفره محاسبه شده و عمليات حفاري آغاز مي شود ، عمق حفره نيز با توجه به عمق لوله دفن شده محاسبه مي شودکه اين عمق به ارتفاع ميانگين 2 متر مي باشد.درانتهاي حفاري در حقيقت حفره مورد نظر داراي طول 20 و عرض 1 و ارتفاع 2 متر مي باشد. که در اين حفره مي توان حدود 20 آند قرار داد. بعد از اتمام عمليات حفاري در کف بستر مخلوطي از کک ، نمک ، کچ، و آهک اضافه مي کنند تاحفره خصوصيات لازم را براي هدايت بهتر جريان پيدا کند. درحقيقت نمک باعث پيدا شدن خاصيت اسيدي ، آهک باعث خاصيت قليايي و وجود گچ نيز باعث جذب رطوبت مي شود. سپس بر روي اين بستر کک با دانه بندي خاص اضافه شده و آنرا به خوبي مي کوبند تا هيچ حفره اي در آن باقي نماند.
    کابل برق را به حالت حلقه در آورده و آندها را به طور يکي در ميان به دو طرف حلقه متصل مي کنند ، اتصال کابل آندها به کابل اصلي توسط سل پک (Cell Pack )انجام مي شود. درون سل پک با يک ماده آلي پر شده تا هيچ گونه نشست جريان نداشته باشيم.( شكل 13 ) اگر جريان از اتصالات نشت پيدا كند باعث سولفاته شدن و بعد قطع جريان مي شود.

    شكل 13 - Cell Pack
    آندها را به طور عمودي در حفره طوري قرار مي دهند که فاصله بين هر دو آند برابر طول خود آند باشد. سپس روي آندها را دوباره کک ريخته و يک لوله با چند منفذ ورودي را روي آنها قرار داده تا گازهاي توليدي حفره به راحتي خارج شوند. سپس روي حفره را با خاک مي پوشانند. لازم به ذکر است که در پالايشگاهها که يک مجموعه بايد حفاظت شود و فضاي لازم را نداريم از چاهک آندي استفاده مي شود يعني با شرايط گفته شده يک چاه احداث مي شود و آندها به طور زنجير وار و عمودي درون آن قرار مي گيرند.

    ديگر تجهيزات لازم براي يک ايستگاه حفاظت کاتدي عبارت از يک ترانسفورماتور Dc است. درحقيقت کابل خروجي از حفره به رکتيفاير متصل مي شود.ولتاژ و جريان مورد نياز بستر توسط رکتيفاير تنظيم مي شود.

    شكل14 - نمايي شماتيك از يك سيستم حفاظت كاتدي

    مطابق جدول2 از آندهاي بسياري مي توان استفاده کرد ؛ در حفاظت کاتدي فاکتورهاي عمر مفيد و هزينه تعيين کننده است. در حفاظت خطوط لوله از آند هاي گرافيتي استفاده مي شود، اما در سال هاي اخير نيز استفاده از آهن قراضه به عنوان آند متداول شده است.

    كاهش وزن lb/amp-yr
    مواد
    20

    10-12

    0.25-5

    0.25-1
    قراضه فولاد

    آلومينيم

    گرافيت

    چدن پرسيليسيم


    جدول2- انواع آند با جريان خارجي براي حفاظت كاتدي
    نظارت بر سيستم حفاظت کاتدي:
    برخلاف ديگر روش هاي جلوگيري از خوردگي که نياز به نظارت نداشتند و يک بار اعمال مي شدند. حفاظت کاتدي نياز به نظارت دائمي دارد که اين نظارت در دو حوزه اساسي دنبال مي شود. حوزه اول شامل بررسي و چک کردن و مراقبت از سخت افزار سيستم است و حوزه دوم عبارت است از اندازه گيري و بررسي پتانسيل خط لوله نسبت به زمين

    طبق دياگرام ايوانز خطوط لوله که در تماس با خاک قرار دارند چنانچه به پتانسيل 0.85- نسبت به الکترود مقايسه مس- سولفات مس پلاريزه گردند ، محافظت خواهند شد. براي اينکه بتوان در تمامي قسمت هاي خط لوله اين پتانسيل را اندازه گرفت و از صحت آن مطلع شده بر روي خط لوله در هر km 2 يک تست پوينت قرار گرفته است. در حقيقت هر تست پوينت به منزله يک ترمينال براي اندازه گيري پتانسيل خط لوله نسبت به زمين است. ( شكل 15)



    شكل 15- تست پوينت هاي طراحي شده

    در حقيقت يک سر کابل فولادي به لوله جوش داده شده و سر ديگر آن بر روي مارکر نصب مي شود. به دليل پديده افت ولتاژ روي خطوط لوله معمولا ولتاژ اعمالي روي لوله در هر ايستگاه بيشتر از مقدار v 0.85-است. اين ولتاژ بايد طوري انتخاب شود تا دور ترين نقاط لوله نسبت به ايستگاه حفاظت کاتدي از ناحيه حفاظت خارج نشوند و ولتاژ آنها بالاتر از v 0.85-قرار گيرد.

    مقدار ولتاژ اعمالي در هر ايستگاه با توجه به شرايطي که در بخش گذشته ذکر شد متغير است. ولي معمولا سعي بر اين است که ولتاژ اعمالي v2/1 باشد. تا با توجه به پديده افت ولتاژ دورترين نقاط داراي پتانسيل بالاتر از v 0.85- باشند. درصورتي که ولتاژ اعمالي به خط لوله بالاتر از v 8/1 شود. پديده حفاظت پيش از حد ( Over Protection) اتفاق خواهد افتاد.

    محافظت بيش از حد باعث:

    1-مصرف بيش از حد آندها

    2- متصاعد شدن هيدروژن از خط لوله که باعث تاول زدن و تورم وجدايش پوشش هاي آلي و شکنندگي فولاد مي شود.

    3- کاهش قابليت انعطاف پذيري

    4- ترک خوردن هيدروژني

    ايستگاه هاي حفاظت کاتدي در سال 2تا 3 بار چک مي شوند و صحت آنها از نظر کارکرد مورد بررسي قرار مي گيرد.در هر بازديد مقدار ولتاژ و جريان اعمالي اندازه گيري و ثبت مي شود. در صورت هرگونه اخلال ، عمليات عيب يابي و تعمير صورت مي پذيرد. ( شكل 16 )
    مقدار پتانسيل خط لوله نسبت به زمين هم به طور ماهانه اندازه گيري مي شود. سپس نمودارپتانسيل نسبت به فاصله از بستر آندي رسم خواهد شد. اين نمودار به صورت لگاريتمي بوده و هر چه شيب آن کمتر باشد نمايانگر محافظت بهتر خواهد بود. بديهي است که فاصله نقاط اندازه گيري شده km 2 است. نمودار رسم شده با نمودار هاي قبلي مقايسه شده و هر گونه تغيير بيانگر اخلال در سيستم حفاظت کاتدي است. هر گونه افت در پتانسيل بدين معني است که پوشش از بين رفته و بايد اقدامات لازم صورت پذيرد. به همين منظور جداولي طراحي شده که با توجه به شواهد و داده ها مي توان نوع عيب در سيستم حفاظت کاتدي را تعيين و رفع نمود.
    درهنگام بازرسي ايستگاه ها در مناطقي که خاک مقاومت بسيار بالايي دارد و امکان حفاظت به طور کامل وجود ندارد در فصول خشک سال معمولا بر روي حفره آندي آب اضافه مي کنند تا مقاومت خاک کاهش يافته و انتقال جريان صورت پذيرد.



    شكل 16 - ثبت اطلاعات ركتيفاير
    آندهاي فدا شونده :
    در بخش هايي كه امكان ايجاد ايستگاه حفاظت كاتدي وجود ندارد از اين روش براي حفاظت استفاده مي شود. به طور مثال در بخش هايي كه شبكه برق وجود ندارد و يا مسير هاي كوتاه و يا تجهيزات موقت. در اين روش به شيوه يك پيل گالوانيك و با استفاده از جدول استاندارد الكترو شيميايي (e.m.f ) و با اتصال فلزات منفي تر در جدول باعث تبديل شدن خط لوله به قطب كاتد و فلز متصل شده به عنوان قطب آند ، فلز منفي تر خود را فداي قطعه مهندسي مي نمايد در واقعي پيل گالوانيك ايجاد شده است.(شكل 17)




    شكل 17- تصويري از يك مدار آند فدا شونده

    مقدار مورد نياز آند فدا شونده و سطح مقطع آند به طول مدت زمان حفاظت و جريان لازم طبق قانون V=IR دارد. فولاد گالوانيزه كه روكشي ازروي را برخوردار دارد يك مدار آند فدا شونده است. در جدول (3) چند نوع آند قرباني شونده به همراه مشخصات آنها وجود دارد.


    آلومينيم و قلع
    روي
    منيزيم

    6.5

    16-20

    -1.3
    23

    25

    -1.15
    9

    18

    -1.7
    مصرف تئوريك lb/amp-yr

    مصرف واقعي lb/amp-yr

    پتانسيل نسبت به Cu / CuSO4

    جدول 3- مقايسه انواع آندهاي فدا شونده

    ين آندهاي قرباني شونده ، منيزيم متداول ترين است. اگر چه راندامان آن پايين است ( حدود 50 درصد) ليكن اين كمبود با پتانسيل بسيار منفي آن جبران شده و در نتيجه جريان بالايي بدست ميدهد.
    طريقه ايجاد حفره براي قرار دادن آند فدا شونده همانند حفره براي ايستگاه هاي اعمال جريان خارجي است. با اين تفاوت كه مواد پشت بند براي اين نوع حفره كاملا مخصوص بوده و با فرمول تجاري توليد مي شود. همچنين كابل خروجي از آندهاي فدا شونده بايد به طور مستقيم به سازه فلزي متصل گردد.



  6. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  7. #4
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    انواع خوردگي (


    خوردگي را به روش‌هاي مختلفطبقه‌بندي نموده‌اند ولي عمومي‌ترين آن‌ها طبقه‌بندي بر اساس ظاهر و شكل فلز خوردهشده مي‌باشد.به اين روش با مشاهده فلز خورده شده با چشم غير مسلح به راحتي مي‌تواننوع خوردگي آن را مشخص نمود.در بين انواع خوردگي مي‌توان نه نوع منحصربه فرد راپيدا نمود ولي تمام آن‌ها كم و بيش وجه متشابهي دارند که به شرح ذیل می باشند :
    خوردگي يكنواخت Uniform Attack
    خوردگيگالوانيك يا دو فلزي Galvanic or two Metal. Corr
    خوردگي شياري Grevice Corrosion
    حفره‌دارشدن Pitting
    خوردگي بيندانه‌اي Inter Granular. Corrosion
    جدايش انتخابي Selective Leaching
    خوردگيسايشي Erosion Corrosion
    خوردگي توأم با تنش Stress Corrosion
    خسارتهيدروژني Hydrogen damage
    خوردگي يكنواخت

    خوردگي يكنواخت معمول‌ترين ومتداول‌ترين نوع خوردگي است معمولاً به وسيله يك واكنش شيمياي يا الكتروشيميايي بهطور يكنواخت در سرتاسر سطحي كه در تماس با محلول خورنده قرار دارد، مشخص مي‌شود فلزنازك و نازك‌تر شده و نهايتاً از بين مي‌رود يا تجهيزات مورد نظر منهدممي‌شوندمانند خورده شدن يك قطعه فولادي يا روي در داخل يك محلول رقيق با سرعت يكساني درتمام نقاط قطعه خورده مي‌شود. اين نوع خوردگي بالاترين آمار را دارد و عمر تجهيزاتخورده شده را با قرار ددن نمونه‌هايي در داخل محلول خورنده مي‌توان تخمينزد.

    روش جلوگيري از خوردگي يكنواخت

    خوردگي يكنواخت را به سه طريقمي‌توان كنترل و يا كم كرد كه ممكن است يك نوع و يا دو نوع را با همديگر انجامداد.
    انتخاب مواد و پوشش صحيح
    به وسيلهممانعت‌كننده‌ها
    استفاده از حفاظت كاتدي
    خوردگي گالوانيكي يا دو فلزي

    هنگامي كه دو فلز غير همجنس كه در تماس الكتريكي با يكديگر هستند در معرض يكمحلول هادي يا خورنده قرار بگيرند. اختلاف پتانسيل بين آن دو باعث برقراي جريانالكترون بين آن‌ها مي‌شود. فلزي كه مقاومت خوردگي كمتري دارد آندي شده و خوردهمي‌شود. فلز مقاومت‌تر از نظر خوردگي كاتدي مي‌شود كه معمولاً‌ خيلي كم و يا خوردهنمي‌شود. به دليل وجود جريان‌هاي الكتريكي بين فلزات غير هم جنس اين نوع خوردگي،خوردگي گالوانيكي يا دو فلزي اطلاق مي‌شود.
    برای مثال خوردگي در يك فلز (آلومينيوم) به شدت اتفاق مي‌افتد و در فلز ديگر (فولاد) كاهش يافته يا متوقفمي‌گردد. بنابراين اولين چيزي كه در اين مورد سطوح مي‌باشد اين است كه از دو فلزيكه به روي هم اثر مي‌كنند كدام فلز در حالت اول و كدام فلز در حالت دوم قرارمي‌گيرد. پاسخ اين سؤال به وسيله جهت جريان الكتريكي ناشي از اثر گالوانيكي از يكفلز (آند) به فلز ديگر (كاتد) قرار گرفته در يك محلول خورنده داده خواهد شد. بااندازه‌گيري اختلاف پتانسيل دو فلز در محلول مورد نظر اين جهت را در هر موردمي‌توان تعيين نمود. در مورد جفت گالوانيكي آلومينيوم و فولاد مشخص شده است كهآلومينيوم به صورت يك آند عملمي‌كند.





    پتانسيل خوردگي و جهت اثراتگالوانيك

    پتانسيل فلز در محلول وقتي كه خورده مي‌شود به انرژي كهآزاد مي‌شود، بستگي دارد. اين پتانسيل تنها در يك مقدار نسبي قابل اندازه‌گيريمي‌باشد. براي مثال با قرار دادن يك فلز خيلي فعال مانند روي و يك فلز با فعاليتكمتر مانند مس در يك محلول كلريد سديم مي‌توان جهت جرياني كه توسط اثر گالوانيكآن‌ها توليد مي‌گردد، اندازه‌گيري نمود. چنين آزمايشي را مي‌توان با تمام فلزاتممكن در هر محلول خورنده تكرار نمود.با توجه به نتايج آزمايشات به دست آمده، امكانمرتب كردن فلزات در يك گروه كه سري گالوانيك ناميده مي‌شود فراهم مي‌شود. اگرآزمايشات در محلول‌هاي مختلف با غلظت‌هاي مختلف كلريد سديم، ميزان هوادهي متفاوت،سرعت حركت و يا دماهاي مختلف انجام گيرد مقادير گزارش شده مي‌تواند با يكديگراختلاف داشته باشند و در اين حالت محل بعضي فلزات نسبت به هر يك از فلزات ديگر بهصورت يك سري گالوانيك جديد تغيير نمايد.
    سريگالوانيك

    بطور كلي پتانسيل الكتريكي فلزات داراي هيچ مقداري بطورمطلق و مستقل از فاكتورهاي مؤثر بر خواص خوردگي محلولي كه در آن اندازه‌گيري انجاممي‌شود، نمي‌باشد. مقدار پتانسيل مي‌تواند از يك محلول به محلول ديگر يا هنگامي كهيك محلول به وسيله فاكتورهائي از قبيل دما، هوادهي و سرعت حركت تأثير مي‌پذيرد،تغيير كند. بنابراين براي پيش‌بيني پتانسيل فلزات و در نتيجه جهت اثر گالوانيكيآن‌ها در يك محيط، بجز با اندازه‌گيري پتانسيل و در نظر داشتن شرايط دقيق آن محيطهيچ راهي وجود ندارد، به عنوان مثال روي بطور طبيعي نسبت به آهن در دماي محيطيمنفي‌تر يا آنديك‌تر مي‌باشد. همان‌طور كه در جدول گالوانيك نشان داده شده است. باوجود اين اختلاف پتانسيل با افزايش دما تغيير كرده و افزايش مي‌يابد تا زماني كهاختلاف پتانسيل در دماي ٦٠ درجه سانتيگراد ممكن است صفر يا دقيقاً برعكس شود.در هرصورت وضعيت شرايط فلزات نسبت به هم آنطور كه گفته شد در بسياري مواقع خيلي هم تغييرنمي‌كند و تمايل نسبي فلزات به خوردگي در خيلي از محيط‌هائي كه از آن‌ها استفادهمي‌شود تقريباً يكسان باقي مي‌ماند. در نتيجه موقعيت‌هاي نسبي آن‌ها در سريگالوانيك ممكن است در خيلي محيط‌ها تقريباً يكسان باشد. از آنجائي كه بيشتراندازه‌گيري‌هاي پتانسيل و رفتار گالوانيكي فلزات در مقايسه با ساير محيط‌ها بيشترو در آب دريا انجام شده است، در نتيجه بيسشتر سري‌هاي گالوانيك بر اساس اينآزمايشات فلزات را تنظيم كرده‌اند و لذا از اين جداول مي‌توان به منظور احتمالاتاوليه در مورد اثرات گالوانيكي در ساير محيط‌ها زماني كه مستقيماً نتايج قابلاجراتري از آن محيط در دسترس نباشد، استفاده نمود.در يك جفت گالوانيك شامل دو فلزقرار گرفته شده در اين جدول، خوردگي طبيعي فلزي كه موقعيت بالاتري در جدول دارد،احتمالاً شديدتر مي‌شود. در حالي كه خوردگي فلز پائين‌تر جدول احتمالاً كاهشمي‌يابد يا كاملاً متوقف مي‌شود. فلزات با پتانسيل خوردگي مثبت‌تر بي‌اثر يا كاتديكناميده مي‌شوند و فلزات با پتانسيل خوردگي مثبت‌تر بي‌اثر يا كاتديك ناميده مي‌شوندو فلزات با پتانسيل خوردگي منفي‌تر به عنوان فلزات يا آلياژهاي آنديك يا فعالشناخته مي‌شوند.توجه كنيد كه در اين جدول چندين فلز در يك گروه قرار گرفته‌اند كهاحتمالاً اختلاف پتانسيل آن‌ها نسبت به هم زياد نمي‌باشد بنابراين مي‌توان آن‌ها رابدون اثرات گالوانيكي قابل ملاحظه در بسياري از محيط‌ها در كنار يكديگر قرارداد.
    مقدار اثر گالوانيك

    تا اينجا ما فقط جهت اثر گالوانيك را با تعيينپتانسيل نسبي فلزات در يك جفت گالوانيكي مورد بررسي قرار داده‌ايم. در حالي كه درعمل ما بيشتر با شدت اثرات گالوانيكي كه رخ مي‌دهد مواجه هستيم. اين شدت با مقدارجريان يا اصطلاحاً شدت جريان (جريان واحد سطح) تعيين مي‌شود.بر طبق قانون اهم،مقدار جريان توليد شده توسط جفت‌هاي گالوانيكي كه اختلاف پتانسيل آن‌ها زياد است،در يك مقاومت معين مستقيماً با ولتاژ متناسب مي‌باشد. به عنوان مثال، اختلافپتانسيل دو فلز روي و مس در آب دريا ٧٠٠ ميلي ولت مي‌باشد و اين و جفت گالوانيكيمي‌توانند جريان بيشتري (و در نتيجه خوردگي بيشتر) از ساير جفت‌هاي گالوانيكي كهاختلاف پتانسيل كمتر دارند، مثل NAVAL BRASS و مس (با ٤٠ ميلي ولت پتانسيل در آب دريا) توليد نمايند.پتانسيل‌هائي كه گفته مي‌شود پتانسيل‌هائي هستند كه قبل از برقراري هرگونه جريان بين دو فلز اندازه‌گيري شده‌اند و بعضي وقت‌ها آن را پتانسيل جريان بازمي‌گويند.
    عوامل مؤثر در خوردگيگالوانيكي

    Ø نيروي الكتروموتوري : که کاملا" دربالا اشاره شد .
    Ø اثراتمحيط
    هر پديده محيطي كه به برقراري جريان الكتريكي بين دو الكترود مؤثر باشد درخوردگي گالوانيكي نيز مؤثر است مانند رطوبت هوا و بالا بودن دماو...
    Ø فاصله دوالكترود
    خوردگي گالوانيكي با فاصله دو فلز در محل اتصال نسبت دارد يعني هرچه از فصلمشترك دو فلز دورتر شويم خوردگي و اثرات آن كاهش مي‌يابد و در نزديكي تماس، خوردگيشديدتر مي‌باشد.
    Ø اثرسطح
    يك فاكتور مهم ديگر در خوردگي گالوانيكي اثر سطح، يا نسبت سطح كاتد به سطحآند مي‌باشد.
    نسبت سطحي نامناسب مشتمل بر كاتد بزرگ و آند كوچكاست.





    براي يك مقدار معين جريان در پيل، دانسيته جريان برايالكترود كوچك به مراتب بزرگ‌تر است تا دانسيته جريان براي الكترود بزرگ‌تر. هرچهدانسته جريان در يك منطقه آندي بزرگ‌تر باشد سرعت خوردگي بيشتر است.خوردگي نواحيآندي ممكن است صد تا هزار برابر بيشتر از حالتي باشد كه سطح آند يا كاتدبرابرند.
    تشخيص خوردگيگالوانيكي

    قبل از بحث در مورد راه‌هاي جلوگيري از خوردگي گالوانيكي، لازماست اول اطمينان حاصل شود كه خوردگي گالوانيكي اتفاق افتاده است. براي رخ دادنخوردگي از اين نوع، وجود شرايط سه گانه زير معمولاً ضروري است.دو فلز غير هم جنس ازنظر الكتروشيمي بايد وجود داشته باشند.اين فلزات بايد بطور الكتريكي با يكديگر تماسداشته باشند.اين فلزات بايد در معرض يك الكتروليت قرار گرفته باشند.تمام اين شرايطبراي اينكه خوردگي از نوع گالوانيكي رخ بدهد، بايد وجود داشته باشند.به عنوان مثال،ملاحظه مي‌شود كه فولاد زنگ نزن ٨-١٨ (نوع 304:S 30400) در تماس الكتريكي با فولاد ضد زنگ 18-8MO (نوع 316: S31600) به سرعتخورده مي‌شود. با مراجعه به جدول سري گالوانيكي مي‌توان متوجه شد كه خوردگي پيشآمده از نوع خوردگي گالوانيكي نمي‌باشد. بنابراين با جداسازي اين دو فلز مقاومتخوردگي 18-8SS بهبودنمي‌يابد.همچنين در مثالي ديگر ديده مي‌شود كه يك قطعه آلومينيوم متصل به چدن كه درروغن موتور قرار دارد به شدت مورد حمله قرار مي‌گيرد. به دليل آنكه روغن موتوروبشتر مايعات ارگانيك الكتروليت نيستند بنابراين مشخص مي‌شود كه اين خوردگي از نوعخوردگي گالوانيكي نمي‌باشد. در اين مورد هم با جدا كردن دو فلز، مقاومت خوردگيآلومينيوم بهبود پيدا نمي‌كند.علاوه بر سه شرط گفته شده بالا در مورد شناخت خوردگيگالوانيك، جستجوي خوردگي موضعي نزديك اتصالات بين دو فلز غير هم جنس راه ديگري برايتشخيص بروز خوردگي از اين نوع مي‌باشد. خوردگي گالونيكي معمولاً در نزديك فلز كاتدشده شدت بيشتري دارد. در شكل مربوط به اتصال ورقه آهن با پرچ مسي ديده مي‌شود كهخوردگي ورقه آهن نزديك پرچ‌هاي مسي شديدترمي‌باشد.
    روش جلوگيري از خوردگيگالوانيكي

    براي جلوگيري از اين خوردگي روش‌هاي مختلفي وجود دارد كهگاهي يكي به تنهائي پاسخگو نمي‌باشد و بايد دو يا سه نوع را با هم به كاربرد.
    حتي‌الامكان سعي شود از دو فلز كه در جدول سري الكتروشيميائيفاصله كمتري نسبت به هم دارند استفاده شود.
    از نسبت سطحي نامطلوب، آند كوچك وكاتد بزرگ پرهيز شود. مخصوصاً در اتصالات
    از خاصيت عايق‌ها دو فلز غيرهمجنساستفاده شود.
    استفاده از پوشش‌ها مخصوصاً رويآند
    استفاده از ممانعت‌كننده‌ها
    در مورد موادي كه در جدولگالوانيكي دور از يكديگر مي‌باشند از اتصالات پيچ و مهره بپرهيزيد. به دليل كم شدنضخامت مؤثر در مرحله پيچ‌سازي سعي شود از اتصال زرد جوش BRAZING استفادهشود.
    قسمت‌هاي آندي را طوري طراحي كنيد كه به سهولت قابل تعويض باشنديا آن‌ها را ضخيم‌تر انتخاب كنيد تا عمر بيشتري داشتهباشند.
    به اتصال‌هاي گالوانيكي، فلز سومي كه نسبت به دو فلز قبلي آندباشد متصل نمائيد. (آند فداشونده)
    ٣- خوردگي شياري

    اكثراً در شيارها و نواحي ديگري روي سطح فلز كه حالت مرده SHELDED AREAS دارندهو در معرض محيط خورنده قرار مي‌گيرند خوردگي موضعي شديدي اتفاق مي‌افتد.اين نوعخوردگي معمولاً همراه با حجم‌هاي كوچك محلول‌ها يا مايعات كه در اثر وجود سوراخسطوح واشرها، محل روي هم قرار گرفتن دو فلز LAPJOINIS، رسوبات سطحي و شيارهايزيرپيچ، مهره‌ها و ميخ پرچ‌ها ساكن شده‌اند (حالت مرده) مي‌باشد اتفاق مي‌افتد بههمين دليل اين نوع خوردگي، خوردگي شياري يا لكه‌اي يا واشري نيزمي‌گويند.
    عوامل مؤثر در خوردگيشياري

    عوامل مؤثر در اين نوع خوردگي در جدول زير خلاصه شدهاست:


    جدول 1-3 عوامل موثر درخوردگی شیاری

    افزايشپارامتر در مقاومت خوردگي
    پارامتر
    كاهش مي‌يابد
    دانسيته جريان بحرانيآندي
    IC
    افزايش مي‌يابد
    پهناي شيار
    W
    افزايشمي‌يابد
    پتانسيل غيرفعال شدن
    EP
    كاهش مي‌يابد
    پتانسيل فعال
    Ea



    روش‌هاي جلوگيري از خوردگيشياري

    شيارها را در محل روي هم قرار گرفتن دو فلز با جوشكاري مداوم،كالك كردن CAULKING ويا لحيم‌كاري بپوشانيد.
    از ته‌نشين شدن مواد و تجمع آن‌ها در كف تانك‌ها ومخازن جلوگيري شود.
    از ايجاد گوشه‌هاي تيز و نواحي مرده و ساكن در تجهيزاتبپرهيزيد.
    بازرسي و تميز تمودن مرتب تجهيزات
    حذف جامدات معلق در فرآيندكارخانه‌ها
    در مرحله خوابيدن كارخانه، مواد جاذب رطوبت WET PACKING MATERIALS را حذفنمائيد.
    در صورت امكان، محيط يكنواخت به وجود بياوريد مثلاً در پشت بند BACKFILL كردن يك خطلوله.
    هر جا كه ممكن باشد از واشرهاي جامد كه جاذب رطوبت نيستند NONABSOKBENT مانندتفلون استفاده نمائيد.
    4- حفره‌دار شدن

    حفره‌دار شدن نوعي خوردگي شديداًموضعي است كه باعث سوراخ شدن فلز مي‌شود. اين سوراخ‌ها ممكن است قطرهاي مختلفيداشته باشند، اما در اكثر موارد قطر آن‌ها كوچك است.حفره‌ها گاهي مجزا بوده و گاهيآنقدر نزديك هم هستند كه سطح زبري به وجود مي‌آورند. معمولاً در صورتي كه قطر دهانهمحل خورده شده تقريباً مساوي يا كمتر از عمق آن باشد شكل حاصل را حفرهمي‌نامند.
    خصوصيات حفره‌ها

    حفره‌ها معمولاً در جهت نيرويجاذبه رشد مي‌كنند اكثر حفره‌ها روي سطوح افقي به وجود آمده و به پائين رشدمي‌كنند.
    دوره شروع INITIATION حفره‌دار شدن معمولاً طولاني است و بسته به فلز و محيط ايندوره‌ها بين چندين ماه يا سال طول مي‌كشد ولي پس از تشكيل به سرعت رشدمي‌كنند.
    حفره‌ها موقع رشد تمايل به خالي كردن زير سطح فلز UNDERCUT دارند و با سرعت دائماًافزاينده‌اي به داخل نفوذ مي‌كنند.
    حفره‌دار شدن در اثر يك واكنش آندي منحصربفرد است. اين نوع خوردگي اتوماتيك است. يعني واكنش‌هاي خوردگي در داخل حفره شرايطي را بهوجود مي‌آورند كه محرك ادامه خودشان هستند.
    اكثر انهدام‌هاي ناشي از حفره‌دارشدن در اثر كلرورها و يون‌هاي حاوي كلر مي‌باشند. بنابراين در محيط‌هاي آبي ونمك‌دار و هيپوكلريت‌ها (مواد سفيدكننده) BLEACHES اين نوع خوردگي زيادمي‌شود.
    حفره‌دار شدن معمولاً‌به همراه محيط خورنده در حالت ساكن و مردهمثل مايع درون يك تانك يا مايع جمع شده در يك قسمت غيرفعال سيستم لوله‌كشي اتفاقمي‌افتد.افزايش سرعت حركت محيط خورنده غالباً اين نوع خوردگي را كاهش مي‌دهد، مثلاُيك پمپ از جنس فولاد زنگ نزن كه براي انتقال آب دريا به كار مي‌رود. اگر دائماً كاركند عمر بيشتري خواهد داشت تا در حال توقف‌هاي طولاني مدت (از نظرخوردگي).
    چون حفره‌دار شدن يك نوع خوردگي موضعي و متمركز است آزمايشاتمعمولي اندازه‌گيري تقليل وزن را نمي‌توان براي ارزيابي يا حتي مقايسه در مورد آنبه كار برد چون تقليل وزن فلز خيلي كم بوده و عمق نفوذ را نشان نمي‌دهد.گرفتن عمقميانگين نيرو روش ضعيفي مي‌باشد زيرا همواره عميق‌ترين حفره است كه باعث انهاممي‌گردد.بنابراين مبناي اندازه‌گيري بايد عميق‌ترين حفره موجودباشد.
    مكانيزم خوردگي حفره‌اي

    براي توضيح مكنيزم خوردگي حفره‌ايمي‌توان آن را در دو بخش اوليه يعني شروع تشكيل حفره و بخش دوم كه شامل فعاليت‌هاياتوكاتاليتيك مي‌باشد بررسي نمود.
    بخش اوليه: پيدايش حفره INITIATION

    يك قطعه فلز M عاري از هر گونه سوراخ يا حفرهرا در نظر بگيريد كه در داخل محلول كلرورسديم اكسيژن‌دار فرو برده شده است. اگر بههر دليلي سرعت انحلال فلز بطور لحظه‌اي در يك نقطه خاص بالاتر باشد يون‌هاي كلر بهاين نقطه مهاجرت مي‌كنند. چون يو‌هاي كلر انحلال فلز را تسريع مي‌كنند شرايط مساعديبراي خوردگي سريع‌تر فلز در آن نقطه فراهم مي‌شود.سرعت انحلال ممكن است در اثر يكخراش سطحي يا يك نابجائي كه به سطح رسيده است يا نواقص ديگر يا غير يكنواختي تركيبشيميائي محلول بطور لحظه‌اي در يك نقطه باشد.واضح است كه در هر مرحله شروع و مراحلاوليه رشد يك حفره، شرايط تا حدودي ناپايدار مي‌باشد.غلظت موضعي و بالاي يون‌هايكلر و هيدروژن ممكن است در اثر جابجائي ناگهاني محلول از بين بروند، زيرا هنوز عمقحفره آنقدر نشده است كه محلول موجود در آن ساكن شده و از جريان محلول اصلي در امانبماند.
    بخش دوم: خاصيت خودتكثير حفره‌ها SELF STMULATING SELF PROPAYATINGS

    اين پديده پس از تشكيل حفره با عمق مناسب كه موجب ساكن بودن سيالدر آن شود شورع مي‌شود. براي توضيح اين بخش شكل ذيل را در نظر بگيريد.فلز M به وسيله محلول نمكطعام اكسيژ‌دار AERATED در معرض حفره‌دار شدن قرار دارد.انحلال سريع فلز در داخل حفرهواقع شده در حالي كه احيا اكسيژن روي سطح مجاور انجام مي‌شود، اين واكنش خوردگي خودمحرك و خود تكثير مي‌باشد.انحلال سريع فلز در داخل حفره باعث ايجاد بار مثبت اضافيدر اين ناحيه مي‌شود كه در نتيجه براي برقراري تعادل الكتريكي يون‌هاي كلر به داخلحفره مهاجرت مي‌كند. بدين ترتيب در داخل حفره غلظت بالائي از MCL ايجاد مي‌شود و در نتيتجههيدروليز غلظت بالائي ازبه وجود مي‌آيد.

    اكسيداسيون
    احياء

    يون‌هاي هيدروژن و كلر باعث تسريع انحلال اكثر فلزات وآلياژها مي‌گردند و شتاب واكنش با گذشت زمان زيادتر مي‌شود. چون قابليت انحلالاكسيژن در محلول‌هاي غليظ تقريباً صفر است. هيچ‌گونه احيا اكسيژن در داخل حفره صورتنمي‌گيرد. واكنش كاتدي احيا اكسيژن در داخل حفره صورت نمي‌گيرد. واكشن كاتدي احيااكسيژن روي سطح خارجي مجاور حفره باعث محافظت آن سطوح در مقابل خوردگي مي‌شود، بهعبارتي حفره‌ها بقيه سطح فلز را حفاظت كاتدي مي‌كننند و به همين دليل خوردگي حفرهدر جهت جاذبه زمين رشد مي‌كند.



    روش‌هاي جلوگيري از خوردگيحفره‌اي

    Ø كليه روش‌هائي كه براي مبارزه باخوردگي شياري ذكر گرديد در اين نوع خوردگي نيز مؤثرمي‌باشد.
    Ø استفاده از آلياژهائي كه در برابرحفره‌دار شدن بسيار مقاوم مي‌باشند.
    اين نوع آلياژها عبارتنداز:

    الف: فولاد زنگ نزن نوع ٣٠٤
    ب: فولاد زنگ نزن نوع٣١٦
    ج: هستوليF، نيونل يا دوريمت ٢٠
    د: هستولي C، يا كلريمت٣
    ه - تيتانيم
    نکته : افزودن ممانعت‌كننده بايد با دقت خاصي صورت گيرد به دليل اينكه اگرخوردگي كاملاً متوقف نگردد، حفره‌دار شدن تشديدمي‌شود.
    5 - خوردگي بين دانه‌اي

    در مبحث متالورژيكي در رابطه بادانه‌ها (كريستال‌ها) و مرزدانه‌ها توضيحاتي داده شد.اگر يك فلز در يك شرايط خاصناپايدار شده و در نتيجه خورده شود، چون مرزدانه‌ها معمولاً كمي فعال‌تر از خوددانه‌ها مي‌باشند، بنابراين خوردگي يكنواخت به وجود مي‌آيد اما تحت بعضي شرايط،مرزدانه‌ها نسبت به دانه‌ها خيلي فعال‌تر مي‌شوند و خوردگي بين دانه‌اي به وجودمي‌آيد.خوردگي موضعي و متمركز در مرزدانه‌ها يا نواحي نزديك به آن‌ها در حالي كهخود دانه‌ها يا اصلاً خورده نشده‌اند يا كم خورده شده‌اند خوردگي را بين دانه‌ايمي‌نامند، آلياژ پودر مي‌شدو (دانه‌ها يا كريستال‌ها جدا مي‌شوند) و يا استحكام خودرا از دست مي‌دهند.
    خصوصيات خوردگيبين‌دانه‌اي

    Ø خوردگي بين‌دانه‌اي به وسيلهناخالصي‌هاي موجود در مرزدانه‌ها، غني شدن يا فقير شدن DEPLETION مرزدانه‌ها نسبت به يكعنصر آلياژي در اين نواحي واقع مي‌شود. مثلاً فقير شدن مرزدانه‌ها نسبت به كرم باعثخوردگي بين دانه‌اي فولادهاي زنگ نزن مي‌گردد.
    Ø اينپديده در حالت‌هاي حساس شدن SENSITIZATION فلزات به وجودمي‌آيند. مثلاً فولاد زنگ نزن ٨-١٨ در محدوده‌ي950 تا 450 اگر حرارت داده شوند حساس شدهو مستعد خوردگي بين دانه‌اي مي‌باشد.
    روش‌هاي جلوگيري از خوردگيبين‌دانه‌اي

    به دليل اينكه اين خوردگي بيشتر در فولادهاي زنگ نزن اتفاقمي‌افتد سه روش جلوگيري آن را در اين مورد ذكرمي‌كنيم:
    در درجه حرارت بالا فلز تحت عمليات حرارتي محلولي قرار داده شود وسپس در آب سريع سرد شود.
    اضافه كردن عناصري كه تمايل شديدي به واكنش ويكنواخت كردن آلياژ دارند اين عناصر را پايداركننده‌هامي‌نامند.
    تقليل كربن فولاد به كمتر از ٠٣/٠ درصد تا كاربيدكافي براي به وجود آمدن خوردگي بين دانه‌اي به وجود نيايد.عمليات حرارتي محلولي درصنعت، مشتمل بر حرارت دادن در١٠٥٠درجه سانتگراد تا١١٥٠و سپس سرد كردن سريع در آبمي‌باشد. در اين درجه حرارت‌ها كاربيد كرم حل مي‌شود و در نتيجه آلياژ همگن‌تر ويكنواخت‌تر به دست مي‌آيد.
    6- جدايش انتخابي SELECTIVE LEACHING

    جدايش انتخابي، جدا شدن يكي از عناصر آلياژي ازآلياژ جامد در فرآيند خوردگي مي‌باشد. مانند جدا شدن روي از آلياژهاي برنج كه بهزدايش روي DEZINCIFICATION معروف است. برنج زرد معمولي از تقريباً ٣٠% درصد روي و ٧٠% درصدمس تشكيل يافته است. زدايش روي به سهولت با چشم غيرمسلح مي‌توان تشيخص داد، زيراآلياژ قرمز رنگ مسي حاصل مي‌شود كه از رنگ زرد اصلي آلياژ تميز مي‌باشد.دو نوعزدايش روي وجود دارد كه به سهولت قابل تشخيص هستند.نوع لايه‌اي يا يكنواخت و نوعموضعي PLUG TYPE درنوع لايه‌اي يك سري لايه داخلي كه تيره‌تر از ساير نقاط مي‌باشد مشخص مي‌گردد، اينهمان قسمتي است كه روي خود را از دست داده و لايه خارجي برنج زرد خورده نشده است.درنوع موضعي به صورت ناحي تيره سوراخ‌هائي هستند كه در آن محلول‌ها روي از دست رفتهاست و در سطح فلز پراكنده و مشخص مي‌باشند كه به صورت لكه‌لكه ظاهر مي‌شوند. نوعلايه‌اي بيشتر در برنج‌هائي كه درصد روي آن‌ها بالاتر است و در محيط‌هاي اسديي واقعمي‌شود اتفاق مي‌افتد و نوع موضعي اغلب در برنج‌هائي كه مقدار روي آن‌ها كم است ودر شرايط خنثي، قليائي يا كمي اسيدي قرار دارند اتفاق مي‌افتد.در كل مكانيزم زدايشروي را مي‌توان مشتمل بر سه مرحله دانست:

    انحلال برنج (بر اساس فعال بودنرويو نجيب بودن مس).
    باقيماندن روي در محلول
    راسب شدن مس روي سطحبرنج
    گرافيته شدن

    گاهي اوقات چدن خاكستري جدايش انتخابي از خود نشان مي‌دهدمخصوصاً در محيط‌هائي كه از نظر خوردگي نسبتاً متوسط مي‌باشند.به نظر مي‌رسد كه سطحچدن گرافيته شده، زيرا سطح چدن ظاهر گرافيتي به خود گرفته و به سهولت مي‌توان بهوسيله قلم تراش آن را تراشيد، به همين دليل اين پديده را گرافيته شدن و گاهي خوردگيگرافيتي گويند كه اين نام‌گذاري غلط مي‌باشد و در واقع جدايش انتخابي كربن از آلياژچدن مي‌باشد.
    روش‌هاي جلوگيري از جدايشانتخابي

    كم كردن خوردگي محيط مثلاً حذفاكسيژن
    حفاظت كاتدي
    اضافه كردن فلزي ديگر به آلياژ. مثلاً اضافه كردن ١% درصد قلع به برنج ٣٠-٧٠
    استفاده از ممانعت‌كننده مانند افزودن مقادير كميآرسنيك و آنتيموان يا فسفر به آلياژ برنج
    براي محيط‌هائي بسيار خورنده كهزدايش روي در آن‌ها اتفاق مي‌افتد يا براي قطعاتي كه از اهميت بالائي برخوردارند ونبايد به هيچ وجه خورده شوند از كوپرونيكل‌ها استفادهمي‌كنند.
    · كورپرونيكل‌ها آلياژ ٧٠% تا ٩٠% درصدمس و ٣٠% تا ١٠% درصد نيكل مي‌باشد. CUPRANICEL
    7- خوردگي سايشي

    خوردگي سايشي عبارت است از سرعت يافتن يا افزايش سرعت خوردگي يا از بين رفتنيك فلز در اثر حركت نسبي بين يك مايع خورنده و سطح فلز.معمولاً اين حركت خيلي سريعاست و اثرات سايش مكنيكي و يا سائيده شدن وجود دارد. يون‌هاي فلزي حل شده روي سطحفلز در اثر حركت روي سطح باقي نمي‌ماند، يا محصولات جامد حاصل از خوردگي از سطح فلزبه طريق مكانيكي كنده مي‌شوند.گاهي اوقات حركت باعث تقليل سرعت خوردگي مي‌گردد. مخصوصاً موقعي كه تحت شرايط ساكن خوردگي موضعي اتفاق بيافتد. اما اين خوردگي سايشينيست زيرا سرعتد خوردگي افزايش نيافته است.
    خصوصيات خوردگيسايشي

    خوردگي سايشي داراي ظاهري شيادار GULLIES، موجي شكل، سوراخ‌هاي كرويشكل و ناهموار مي‌باشد كه در جهت خاصي قرارگرفته‌اند.
    بيشتر در فلزاتي كه سختي پائيني دارند و به سهولت صدمه مي‌بينندمانند مس و سرب روي مي‌دهد.
    كليه تجهيزاتي كه در تماس با مايعات متحرك مي‌باشنددر معرض خوردگي سايشي قرار دارند مانند سيستم‌هاي لوله‌كشي مخصوصاً زانوها ELBOW، پيچ‌ها BENS، سه راهي‌ها TESE، شيرها VALVES، پمپ‌هايدمنده، دستگاه‌هاي گريز از مركز،پروانه‌هاIMPELLERS،به هم‌زن‌ها AGITATORS، تانك‌هايمتحرك AGITATED،لوله‌هاي مبدل حرارتي مانند بويلرها و كندانسورها، پره‌هاي توربين، افشانه‌ها،دودكش‌ها، گيوتين‌ها GUTTERS، زره‌هاي آسياب PLATES WEAR و تجهيزاتي كه در معرض پاشيدن (SPRAY) قرارمي‌گيرند.
    عوامل مؤثر بر خوردگي سایشی

    پوست‌هاي سطحي:
    ماهيت و خواص پوسته‌هاي محافظ سطحيكه روي بعضي فلزات و آلياژها تشكيل مي‌گردد از نظر مقاومت در برابر خوردگي سايشيخيلي اهميت دارد. براي مثال پوسته سطحي كه سخت، متراكم، چسبنده و پيوسته باشد نسبتبه موقعي كه پوسته به سهولت سائيده و يا كنده شود حفاظت بهتري به وجود خواهدآورد.
    اگر پوسته ترد باشد و تحت تنش ترك بخورد و خرد بشود ديگر محافظ نخواهد بود ومحل مناسبي جهت خوردگي حفره‌اي مي‌شود.
    سرعتحركت:
    سرعت حركت در خوردگي سايشي نقش مهمي به عهده دارد.افزايش سرعتحركت معمولاً باعث افزايش خوردگي مي‌گردد. اثر سرعت ممكن است تا رسيدن به يك سرعتبحراني صفر يا كم باشد و به مجرد رسيدن به سرعت بحراني به شدت افزايش يابد.معمولاً‌افزايش سرعت از يك تا چهار فوت بر ثانيه تأثير كمي بر سرعت خوردگي دارد اما سرعت 27/FT/SEC خوردگيشديدي به وجود مي‌آيد كه سرعترا سرعت بحراني مي‌نامند. براي مثال: برنز سيليسيم در آبدريا با سرعتسرعت خوردگي آن 1mdd ميلي‌گرم بر دسي مترمربع به روز مي‌باشد و در سرعتبه 2mdd و در سرعتبه 254mdd مي‌رسد. بنابراين سرعتسرعت بحراني مي‌باشد كه در آنخوردگي كمترين سرعت را دارد و پس از آن به شدت خوردگي زياد مي‌شود. لازم به ذكر استذرات معلق در سيال نقش افزاينده دارند. Miligram Per Square Decimeter/ Day
    تلاطم يا آشفتگي: TURBULANCE
    آشفتگي جريان سيال در تماس با سطحفلزات، مخصوصاً در مدخل ورودي لوله‌ها، لبه‌هاي تيز، شيارها، رسوبات، تغيير سريعسطح مقطع به دليل به هم زدن و تلاطم بيشتر مايع نسبت به جريان آرام باعث افزايشخوردگي سايشي مي‌شود.
    برخورد: IMPINGMENT
    اين پديده اثر خود را در مواقعيبروز مي‌دهد كه تجهيزات بخواهند جهت حركت سيال را تغيير بدهند براي مثال يك زانو كهمي‌خواهد سيال را از حالت عمودي به افقي و يا بالعكس تغيير جهت دهد برخورد شديدي درآن ناحيه ايجاد شده و باعث خوردگي در قسمت مزبورمي‌شود.
    مثال‌هاي ديگر پره‌هاي توربين بخار، جداكننده‌هاي تله‌اي اتصالات T در لوله‌كشي‌ها،اجزاي خارجي هواپيماها و غيره...
    كاربردپوشش‌ها:
    پوشش‌هاي سخت يا زره‌ها يا روكش‌هاي قابل تعويض، مشروط بهاينكه از جنس مقاومي از نظر خوردگي ساخته شده باشند كاربرد مفيدي در خوردگي سايشيدارد.
    8- خوردگي توأم با تنش

    در نتيجه اعمال همزمان تنش‌هايكششي و محيط خورنده روي فلز كه ايجاد ترك‌هاي پراكنده مي‌كند و در نهايت باعثخوردگي آن‌ها مي‌گردد توأم با تنش يا SCC ايجاد مي‌شود. بنابراين ترك‌هاو شكل ترك‌ها CRACK MORPHOLOGY نقش اساسي را در اين نوع خوردگيدارند.
    انواع ترك در خوردگي توأم با تنش

    در SCC دو نوع ترك كلي ديدهمي‌شود:
    ترك‌هاي بين‌دانه‌اي INTERGRANULAR
    كه اين نوع ترك‌ها در طورمرزدانه‌ها حركت مي‌كنند مانند SCC بين دانه‌اي برنج.
    ترك‌هاي ميان دانه‌اي TANSGRANULAR
    اين نوع ترك‌ها از داخل دانه‌ها عبور مي‌كنند مانند: SCC ميان دانه‌اي درفولاد زنگ نزن. غالباً در يك آلياژ، هر دو نوع ترك ممكن است به وجود بيايند. نوعترك بستگي به محيط خورنده و ساختمان فلز دارد.ترك خوردن معمولاً در جهت عمود بر تنشاعملا شده اتفاق مي‌افتد و بسته به ساختمان فلز و تركيب شيميائي محيط خورنده شكلترك‌ها مي‌تواند به صورت چند شاخه‌اي و يا شاخه شاخهباشند.
    عوامل مؤثر در SCC

    ١- اثراتتنش

    افزايش تنش، زمان شكست را كاهش مي‌دهد و براي هر آلياژ تنشي وجوددارد كه در كمتر از آن شكست اتفاق نخواهد افتاد.حد تنش مجاز براي مصونيت از نظر SCC بستگي به درجهحرارت، تركيب شيميائي فلز و تركيب شيميائي محيط دارد. بطور كلي حد تنش مجاز بين ١٠% تا ٧٠% درصد تنش تسليم است.
    ٢- زمانشكست

    زمان در SCC پارامتر مهمي است، زيرا خسارت فيزيكي مهمي كه در SCC اتفاق مي‌افتد در مراحل نهائيصورت مي‌گيرد. با نفوذ ترك‌ها به داخل فلز سطح مقطع مؤثر فلز كم مي‌شود و در نتيجهتنش افزايش مي‌يابد و نهايتاً شكست نهائي، مكانيكي خواهدبود.
    ٣- فاكتورهاي محيطي

    در حال حاضر الگوي كلي براي محيط‌هائي كه درآلياژهاي مختلف باعث ايجاد SCC مي‌شوند وجود ندارد.
    SCC در بعضي محيط‌هاي آبي، نمك‌هاي مذاب، فلزات مذاب، مايعت معدني فاقد آب اتفاقمي‌افتد. وجود اكسيدكننده‌ها غالباً اثر زيادي بر تمايل به ترك خوردندارد.
    ٤- فاكتورهاي متالوژيكي

    فاكتورهاي مؤثرد ر SCC عبارتنداز:
    تركيب شيميائي متوسط، طرز قرار گرفتن كريستال‌ها (دانه‌ها)، تركيب و توزيعرسوبات در داخل فلز، واكنش نابجائي‌ها با يكديگر و ميزان پيشروي حالت‌هاي فازي درآلياژها. اين فاكتورها به علاوه تركيب شيميائي محيط و تنش اعمال شده، زمان شكست راتعيين مي‌كنند.
    روش‌هاي جلوگيري از SCC

    كم كردن تنش تا زير حد مجاز مثلاً با كم كردن بارويفلز يا ضخيم‌تر كردن قطعه
    حذف اجزا و ناخالصي‌هاي مضر محيط مانند دگازه كردن،دهينداله كردن يا تقطير نمودن.
    استفاده از آلياژ مناسب مثلاً استفاده از اينكونل كهداراي مقدار نيكل بيشتر مي‌باشد به جاي فولاد زنگنزن
    كاربرد حفاظت كاتدي
    اين مورد بايد مواقعي به كار بردهشود كه مطمئن باشيم خوردگي در اثر SCC بوده است نه در اثر تردي هيدروژني، زيرا در غير اين صورت حالتعكس دارد.
    اضافه كردن ممانعت‌كننده‌ها به سيستم در صورتامكان
    در محيط‌هاي خورنده متوسط، فسفات‌ها و ممانعت‌كننده‌هاي آلي ومعدني ديگر بطور موفقيت‌آميزي SCC را كاهش مي‌دهند.
    ساچمه‌زني (شات بلاست كردن) مثلاًفولاد زنگ نزن ٤١٠ در معرض محلول ٣% نمك طعام در دماي محيط با نوع ٣٠٤ در معرضمحلول ٤٢% كلرور منيزيم در١٥٠و آلياژ آلومينيوم 7075-T6 در محلولدردماي محيط
    · ساچمه‌زني يا شات بلاست كردن عبارتاست از ايجاد يك لايه پوسته مناسب در شرايط خاص بر روي فلزات و آلياژهاو اينكونل (يكي از آلياژهاي نيكل) INCONEL است
    9- خسارت هيدروژني

    خسارت هيدورژني يك اصطلاح كلي استكه دلالت بر خسارت مكانيكي وارد شده به فلز در اثر وجود يا واكنش با هيدروژندارد.
    خسارت هيدروژني را به چهار گروه زير تقسيم‌بنديمي‌كنند:
    تاول زدن هيدروژني HYDROGEN BLISTERING
    ناشي از نفوذ هيدروژن به داخل فلز كه در نتيجه تغيير شكلموضعي به صورت تاول روي فلز را منجر مي‌شود تاول زدن هيدروژني گويند كه در مواردخاص باعث انهدام كلي فلز مي‌شود.
    تردي هيدروژني HYDROGEN EMBRITTLE MENT
    تردي هيدروژني نيز در اثر نفوذهيدروژن به داخل فلز است ولي نتيجه آن از دست دادن انعطاف‌پذيري فلز و استحكام آنمي‌باشد.هيدروژن اتمي تنها عنصري است كه مي‌تواند به درون فولاد يا فلز نفوذكند.
    دكربوره كردن DECARBURIZATION
    دكربوره كردن يا از بين رفتن كربنفولاد، غالباً در اثر تماس هيدروژن مرطوب با فلز در درجه حرارت بالا مي‌باشد در اثردكربوره شدن استحكام كششي فولاد كم مي‌شود.

    خوردگي هيدروژني HYDROGEN ATTACK
    منظور از واكنش بين هيدروژن و يكي از عناصر آلياژي يا اجزا تشكيل‌دهنده فلزدر درجه حرارت‌هاي بالامي‌باشد. مثال كلي درباره خوردگي هيدروژني، تجزيه شدن وپوسيدن مس اكسيژن دار در حضور هيدروژنمي‌باشد و يا خوردگي فولاد در اثر گاز متانايجاد شده:
    مكانيزم تاول زدنهيدروژني

    به دليل اينكه تاول زدن هيدروژني بيشتر در صنايع نفت رويمي‌دهد و خسارات زيادي به بار مي‌آورد مكانيزم اين پديده و روش جلوگيري از آن راشرح مي‌دهيم. در ذيل مقطع ديوراه يك تانك كه در داخل آن يك الكتروليت اسيدي و بيرونآن در معرض اتمسفر قرار دارد رسم گرديده است.
    به ترتيب مراحل پيدايش تاولهيدروژني را با توجه به شكل شرح مي‌دهيم:
    آزاد شدن هيدروژن روي سطح داخلي دراثر واكنش خوردگي يا حفاظت كاتدي.
    عبور اتم‌هاي هيدروژن از ديواره تانك به بيرون وتشكيل ملكول هيدروژن در سطح خارجي.
    نفوذ DIFFASION اتم هيدروژن به درونديواره تانك و به تله افتادن در حفره‌ها (نقص متداول در فولادهاي قابي RIMMEDSTEEL)
    تشكيل ملكول هيدروژن درون حفره‌ها
    افزايش فشار درون حفره‌ها به دليلخارج نشدن ملكول‌هاي هيدروژن و تجمع آن‌ها در حفره.
    به دليل اينكه فشار تعادلي هيدروژنملكولي در تماس با هيدورژن اتمي چند صد هزار اتسمفر است باعث انهدام فلزات مهندسيمي‌شود
    خوردگی در پمپ ها
    خوردگی از 8 روش می تواند به سطوحفلزی حمله کند . هشت دلیل موجه برای به کارگیری کامپوزیت ها در سازه های نظامی وغیرنظامی . این 8 روش عبارتند از :

    حمله یکنواخت Uniform Attack

    در این نوع خوردگی که متداول ترین نوع خوردگی محسوب می شود ، خوردگی بهصورتی یکنواخت به سطح فلز حمله می کند و به این ترتیب نرخ آن از طریق آزمایش قابلپیش بینی است .

    خوردگی گالوانیک Galvanic Corrosion

    این نوع خوردگی وقتی رخ می دهد که دو فلز یا آلیاژ متفاوت ( یا دو مادهمتفاوت دیگر همانند الیاف کربن و فلز ) در حضور یک ذره خورنده با یکدیگر تماس پیداکنند . در منطقه تماس ، فرایندی الکترو شیمیایی به وقوع می پیوندد که در آن ماده ایبه عنوان کاتد عمل کرده و ماده دیگر آند می شود . در این فرآیند کاتد در برابراکسیداسیون محافظت شده و آند اکسید می شود .

    خوردگی شکافی Crevice Corrosion

    این ساز و کار وقتی رخ می دهد که یکذره خورنده در فاصله ای باریک ، بین دو جزء گیر کند . با پیشرفت واکنش ، غلظت عاملخورنده افزایش می یابد . بنابراین واکنش با نرخ فزاینده ای پیشروی می کند.

    آبشویی ترجیحی Selective Leaching

    این نوعخوردگی انتخابی وقتی رخ می دهد که عنصری از یک آلیاژ جامد از طریق یک فرآیند خوردگیترجیحی و عموما با قرار گرفتن آلیاژ در معرض اسیدهای آبی خورده می شود . متداولترین مثال جدا شدن روی از آلیاژ برنج است . ولی آلومینیوم ، آهن ، کبالت و زیرکونیمنیز این قابلیت را دارند.

    خوردگی درون دانه ای Intergranular Corrosion

    این نوع خوردگی وقتی رخ می دهد که مرز دانه ها در یک فلز پلی کریستالبه صورت ترجیحی مورد حمله قرار می گیرد . چندین عامل می توانند آلیاژی مثل فولادزنگ نزن آستنیتی را مستعد این نوع خوردگی سازند . از جمله حضور ناخالصی ها و غنیبودن یا تهی بودن مرزدانه از یکی از عناصر آلیاژی .

    خوردگی حفره ای Pitting Corrosion

    این نوع خوردگی تقریبا همیشه بهوسیله یون های کلر و کلرید ایجاد می شود و به ویژه برای فولاد ضد زنگ بسیار مخرباست ؛ چون در این خوردگی ، سازه با چند درصد کاهش وزن نسبت به وزن واقعی اش ، بهراحتی دچار شکست می شود . معمولا عمق این حفرات برابر یا بیشتر از قطر آنهاست و بارشد حفرات ، ماده سوراخ می شود .

    خوردگیفرسایشی Erosion Corrosion

    این نوع خوردگی وقتی رخ می دهد کهمحیطی نسبت به یک محیط ثابت دیگر حرکت کند ( به عنوان نمونه مایع یا دوغابی که درونیک لوله جریان دارد ) یک پدیده مرتبط با این گونه خوردگی ، سایش Fretting است که هنگام تماس دو ماده بایکدیگر و حرکت نسبی آنها از جمله ارتعاش به وجود می آید . این عمل می تواند پوششهای ضد خوردگی را از بین برده و باعث آغاز خوردگی شود .

    خوردگی تنشی Stress Corrosion

    این نوع خوردگی وقتی رخ می دهد کهماده ای تحت تنش کششی در معرض یک محیط خورنده قرار گیرد . ترکیب این عوامل با هم ،ترک هایی را در جزء تحت تنش آغاز می کند.


    این عکس ها پدیدهکاویتاسیون رو که در آزمایشگاه عکس برداری شده نمایش می دهد تا این قضیه ی مهمصنعتی رو که خیلی هم دردسر درست می کند رو بهتر نشان بدهد.





  8. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  9. #5
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    خوردگی فلزات
    همه ی ما تاکنون زنگ زدگی آهن که آن را به رنگزردی در می آورد، سبز شدن ظرف مسی و سیاه شدن نقره را دیده ایم .
    همه ی این ها نمونه هایی از خوردگی هستند. پسبنابر این خوردگی فلزات عبارت است از: واکنش فلزات با محیط و مواد درون محیط برایتبدیل آن فلز به شکل پایدارترش یعنی اکسید یا سولفور یا کربنات.
    خوردگی معمولا از سطح فلز آغاز شده و تا درونآن نفوذ می کند که این کار تدریجی و پیوسته صورت می پذیرد.
    فلزات یا آلیاژها به یکی از چهار شکل زیر خوردهمی شوند:
    1- خوردگی شیمیایی: که بین یک جامد (فلز) و یکمایع یا گاز رخ می دهد. اگر با گاز خورده شود در این صورت خوردگی خشک و اگر با مایعخورده شود نوعی از خوردگی اتفاق افتاده است که جریان الکتریکی نقشی در آن نمی تواندداشته باشد.
    برای این نوع خوردگی مثال خیلی کم وجود دارد بهگونه ای که تنها می توان به خورده شدن فلز توسط جیوه اشاره کرد.
    2- خوردگی الکتروشیمیایی: این نوع خوردگیهنگامی ایجاد می شود که در فلز یا در جسم، ناهمگنی وجود داشته باشد. وجود ناهمگنیدر فلز سبب ایجاد پیل شده و بین کاتد و آند جریان الکتریکی به وجود آمده و فلزخورده می شود.چون تمام فلزات همگن نیستند بنابر این اگر در یک الکارولیت قرار گیرندخورده می شوند آن هم به شکل الکتروشیمیایی .
    3- خوردگی بیوشیمیایی: که توسط عوامل زیستیمانند باکتری ها این نوع خوردگی ایجاد می شود. مانند خورده شدن لوله های نفت در دلزمین به وسیله ی باکتری ها.
    4- خوردگی فرسایشی: که با سایش بین یک ماده یجامد یا مایع یا حتی گاز با فلز موجب خوردگی فرسایشی می شود مانند خوردگی لوله هایآب به وسیله ی عبور آب از درون آن.
    عوامل موثر در خوردگی فلزات:
    1- درجه ی خلوص فلز : هرچه فلز خالص تر باشد وناهمگنی کم تری داشته باشد دیرتر خورده می شود.
    2- تغییرات فیزیکی و مکانیکی فلز
    3- غلظت ماده ی موثر و جنس آن(عاملخورنده)
    4- مقدار اکسیژن
    محیطph5-
    6- درجه ی حرارت
    حفاظت در برابر خوردگی:
    برای این کار ما سه روش پیش روداریم:
    1- ایجاد پوشش و قراردادن ماده ای بین محیط وفلز
    2- سلسله اعمالی را که به آن ها نام اعمالالکتروشیمیایی می دهند روی فلز انجام دهیم تا خوردگی کم یا هیچ گردد.
    3- موادی را درون فلز افزایش دهیم تا سرعتخوردگی کم شود که از این مواد با عنوان کندکننده های خوردگی یاد میشود.
    حفاظت یا ایجاد پوشش: که در این روش فلز یاپلاستیک یا رنگی را روی فلز می کشند تا مانع از خوردگی آن شوند.
    حفاظت با رنگ: برای حفاظت از فلز با رنگ به دونوع رنگ نیاز داریم:
    1- رنگ آستری
    2- رنگ نهایی
    رنگ آستری معمولا روغن کتان یا گلیسروفتالیکاست که دارای کرومات روی است.
    رنگ نهایی که معمولا برای زیبایی روی رنگ آستریمی کشند، باید این نوع رنگ برای اکسیژن هوا غیر قابل نفوذ باشد.
    حفاظت الکتروشیمیایی: در این روش فلز را بهپتانسیلی می بریم که در آن پتانسیل شدت واکنش آندی هیچ یا بسیار ناچیز می شود و عمرقطعه ی مورد نظر طولانی تر می گردد. برای حفاظت الکتروشیمیایی دو نوع حفاظت آندی وکاتدی وجود دارد.
    حفاظت با کندکننده های خوردگی: گندکننده هایخوردگی به موادی گفته می شود که با ایجاد یک لایه بین ماده و فلز مانع از خوردگی میشوند یا در حد امکان از سرعت خوردگی می کاهند.
    به طور کلی دو نوع کند کننده وجوددارد:
    1- آلی
    2- غیر آلی
    کندکننده های آلی مانند: آمین ها چرب و مشتقاتآن ها، آمیدها، الکل ها، تیواوره و ترکیبات آلی که دارای یک یا چند اتصال سه گانهاند.
    تیغ خود تراش یا برخی از قطعات یدکی خودروها رابرای خورده نشدن در هنگام نقل و انتقال درون پوششی از کاغذ آغشته به روغن قرار میدهند.
    خوردگی فلزات
    همه ی ما تاکنون زنگ زدگی آهن که آن را به رنگزردی در می آورد، سبز شدن ظرف مسی و سیاه شدن نقره را دیده ایم .
    همه ی این ها نمونه هایی از خوردگی هستند. پسبنابر این خوردگی فلزات عبارت است از: واکنش فلزات با محیط و مواد درون محیط برایتبدیل آن فلز به شکل پایدارترش یعنی اکسید یا سولفور یا کربنات.
    خوردگی معمولا از سطح فلز آغاز شده و تا درونآن نفوذ می کند که این کار تدریجی و پیوسته صورت می پذیرد.
    فلزات یا آلیاژها به یکی از چهار شکل زیر خوردهمی شوند:
    1- خوردگی شیمیایی: که بین یک جامد (فلز) و یکمایع یا گاز رخ می دهد. اگر با گاز خورده شود در این صورت خوردگی خشک و اگر با مایعخورده شود نوعی از خوردگی اتفاق افتاده است که جریان الکتریکی نقشی در آن نمی تواندداشته باشد.
    برای این نوع خوردگی مثال خیلی کم وجود دارد بهگونه ای که تنها می توان به خورده شدن فلز توسط جیوه اشاره کرد.
    2- خوردگی الکتروشیمیایی: این نوع خوردگیهنگامی ایجاد می شود که در فلز یا در جسم، ناهمگنی وجود داشته باشد. وجود ناهمگنیدر فلز سبب ایجاد پیل شده و بین کاتد و آند جریان الکتریکی به وجود آمده و فلزخورده می شود.چون تمام فلزات همگن نیستند بنابر این اگر در یک الکارولیت قرار گیرندخورده می شوند آن هم به شکل الکتروشیمیایی .
    3- خوردگی بیوشیمیایی: که توسط عوامل زیستیمانند باکتری ها این نوع خوردگی ایجاد می شود. مانند خورده شدن لوله های نفت در دلزمین به وسیله ی باکتری ها.
    4- خوردگی فرسایشی: که با سایش بین یک ماده یجامد یا مایع یا حتی گاز با فلز موجب خوردگی فرسایشی می شود مانند خوردگی لوله هایآب به وسیله ی عبور آب از درون آن.
    عوامل موثر در خوردگی فلزات:
    1- درجه ی خلوص فلز : هرچه فلز خالص تر باشد وناهمگنی کم تری داشته باشد دیرتر خورده می شود.
    2- تغییرات فیزیکی و مکانیکی فلز
    3- غلظت ماده ی موثر و جنس آن(عاملخورنده)
    4- مقدار اکسیژن
    محیطph5-
    6- درجه ی حرارت
    حفاظت در برابر خوردگی:
    برای این کار ما سه روش پیش روداریم:
    1- ایجاد پوشش و قراردادن ماده ای بین محیط وفلز
    2- سلسله اعمالی را که به آن ها نام اعمالالکتروشیمیایی می دهند روی فلز انجام دهیم تا خوردگی کم یا هیچ گردد.
    3- موادی را درون فلز افزایش دهیم تا سرعتخوردگی کم شود که از این مواد با عنوان کندکننده های خوردگی یاد میشود.
    حفاظت یا ایجاد پوشش: که در این روش فلز یاپلاستیک یا رنگی را روی فلز می کشند تا مانع از خوردگی آن شوند.
    حفاظت با رنگ: برای حفاظت از فلز با رنگ به دونوع رنگ نیاز داریم:
    1- رنگ آستری
    2- رنگ نهایی
    رنگ آستری معمولا روغن کتان یا گلیسروفتالیکاست که دارای کرومات روی است.
    رنگ نهایی که معمولا برای زیبایی روی رنگ آستریمی کشند، باید این نوع رنگ برای اکسیژن هوا غیر قابل نفوذ باشد.
    حفاظت الکتروشیمیایی: در این روش فلز را بهپتانسیلی می بریم که در آن پتانسیل شدت واکنش آندی هیچ یا بسیار ناچیز می شود و عمرقطعه ی مورد نظر طولانی تر می گردد. برای حفاظت الکتروشیمیایی دو نوع حفاظت آندی وکاتدی وجود دارد.
    حفاظت با کندکننده های خوردگی: گندکننده هایخوردگی به موادی گفته می شود که با ایجاد یک لایه بین ماده و فلز مانع از خوردگی میشوند یا در حد امکان از سرعت خوردگی می کاهند.
    به طور کلی دو نوع کند کننده وجوددارد:
    1- آلی
    2- غیر آلی
    کندکننده های آلی مانند: آمین ها چرب و مشتقاتآن ها، آمیدها، الکل ها، تیواوره و ترکیبات آلی که دارای یک یا چند اتصال سه گانهاند.
    تیغ خود تراش یا برخی از قطعات یدکی خودروها رابرای خورده نشدن در هنگام نقل و انتقال درون پوششی از کاغذ آغشته به روغن قرار میدهند.
    مقابله با فعاليت باكتريهاي احيا كننده سولفات (srb) در صنعت
    مقابله با فعاليت باكتريهاياحيا كننده سولفات (SRB) در صنعت
    الف- پيشگيري- مهمترين و موثرترين روشجلوگيري از ايجاد مشكلات ناشي از ميكروبها پيشگيري و جلوگيري از ورود ميكروب بهسيستم است، هزينه و مشكلات پيشگيري بسيار كمتر از مبارزه با عوارض يك سيستم آلودهاست و نتيجه آن نيز مطمئن تر است.
    ب: مقابله فيزيكي با باكتريها

    هوا- ارزانترين و مطمئن ترين متوقف كننده فعاليت اين باكتريها هواست، در اين روش گرچهباكتريها از بين نمي روند، اما بصورت غير فعال باقي ميمانند.
    تميز كردن فيزيكيلولههاي آلودهبوسيله (pig) يا برس زبرهمراه با مواد دترجنت، سورفاكتانت و مواد ميكروب كش شستشو دادهميشوند.
    با استفاده از اين روش توده مواد آلي ورسوباتي كه در جدار لوله رسوب كرده است از محيط خارج و شرايط مناسب زيست ايجاد شدهبراي اين باكتريها از بين ميرود.
    فيلترها باجريان معكوس[1]آب شستشو شوند، در صورت لزوم ميتوان به آبدتر جنت و يا ميكروب كش اضافه كرد. از تجمع آب در ته مخازن مواد نفتي جلوگيري بعملآيد و در فواصل زماني معين اقدام به تخليه آب و لجن و شستشوي مخزن نمود. در صورتامكان در سيستم تغييراتي ايجاد شود تا نقاط مرده و ساكن از سيستم حذف و يابهحداقل رسانده شوند. نقاط تماس آب با محيط (هوا،گردوخاك و....) حذف و يا به حداقل رسانده شود
    ج- استفاده از موادشيميايي

    در مورد چاهاي تزريقيدر صورت لزوم چاه اسيد زني شود. بكار بردن مواد ميكروب كش در سيستم با انتخاب نوع ومقدار موثر ماده زيست كش، مواد ميكروب كش را ميتوان بطور منقطع[2]و شوك و يا بطور دايم[3]بكار برد، استفاده مداوم همراه با شوكهايدر فواصل زماني معين ميتواند نتيجه مطلوب بدهد.
    د- حفاظت سطح فلز با استفاده از انواع پوشش ها، حفاظت كاتدي واستفاده از مواد بازدارنده خوردگي بمنظور درك بيشتر تاثير اين ميكروارگانيزم درمكانيزم خوردگي لازم است راجع به اصول خوردگي مختصراً بحث گردد.
    مكانيزم خوردگي الكتروشيميايي

    تشكيل زنگ آهن (هيدروكسيدفريك) يك فرآيند خوردگي است كه براي تشكيل آن سه عامل آهن، رطوبت و اكسيژن لازماست. خوردگي آهن يا فولاد در حضور اكسيژن در محيط مرطوب يك واكنش الكتروشيميايياست. در نقاطي از سطح فلز، آهن به يون دو ظرفيتي خود اكسيد ميشود، اين نقاط راآندو واكنش مربوط را واكنش آندي مينامند.
    Fe Fe+2+2e-واکنشآندی
    دو الكترون آزاد شده از آند به كاتدرفته و با يون هيدرژن (H+) موجود در فاز مرطوبتركيب ميشود و هيدرژن اتمي تشكيل ميشود كه بصورت گاز هيدرژن (H2) آزادميگردد.
    واكنش كاتدي2H++2e - 2H H2
    واكنشهاي فوق نشانميدهد كه خوردگي يك فرآيند الكتروشيميايي است با دو نيمه واكنش آندي و كاتدي. دراين پيل ساده واكنشهايي بين محصولات آندي و كاتدي رخ ميدهد. يون هيدروكسيل تشكيلشده در كاتد(OH-) با يون فرو در آندتركيب ميشود و توليد هيدروكسيد فرو مينمايد.
    2OH-
    هيدروكسيد فرو بوسيله اكسيژن اضافي محلول در الكتروليت بههيدروكسيد فريك اكسيد ميشود.
    محصول حاصل را زنگآهن مينامند.
    شكل 3 نمودار تشكيل هيدروكسيدفرووهيدروكسيد فريك (زنگ آهن) حاصل از فرآيند خوردگي را نشانميدهد.
    هيدرات فريك بااز دست دادن آب تبديل به محصولات خوردگي ميگردد كه در روي سطوح آهني بصورت قرمزرنگ اكسيد فريك آبدار ظاهر ميگردد.
    برخي ازواكنشهاي كاتدي كه در حين فرآيند پيش ميآيد بشرح زير است:
    الف:احياء يون هيدرژن كه در محلولهاي اسيدي اهميتدارد.
    ب:احياء آب كه معمولا درآبهاي طبيعي رخميدهد.
    ج:احياء اكسيژن درمحلولهاي اسيدي هوا زني شده
    د:احياء اكسيژن درآبهاي طبيعي هوا زني شده
    طبق تئوريالكتروشيميايي خوردگي زماني صورت ميگيرد كه دو قطب آند و كاتد وجود داشتهباشد.
    شكل شماره 4 حبابهاي هيدروژن مولكولي درسطح كاتد را نشان ميدهد.
    قطبي شدن كاتد[1]
    در محلولهاي خنثي مثل كلرور سديم تشكيل هيدرژن و متصاعد شدن آن بهآرامي صورت ميگيرد و فيلمي از حبابهاي هيدرژن روي سطح كاتد ايجاد ميشود كه باعثكاهش و حتي توقف خوردگي ميشود، به اين پديده پولاريزاسيون يا قطبش[2]گويند. قطبي شدن يا پولاريزاسيون نيرويمحركه واكنشهاي خوردگي را كاهش ميدهد بنحوي كه اختلاف پتانسيل بين آنها حداقلمقدار را خواهد داشت. شكل5- پلاريزاسيون موضعي كاتد را توسط فيلمي از حبابهايهيدروژن نشان ميدهد.
    هنگامي‌كه پتانسيل كاتدي بوسيلهفيلمي از هيدرژن تك اتمي كه جذب شده است، كاهش يابد پيل خوردگي پلاريزه يا قطبيميشود، اين تجمع هيدرژن بنوبه خود نيروي محركه واكنش كلي، خوردگي را كاهش مي‌دهد،بر عكس كنده شدن هيدروژن از سطح كاتد واكنش خوردگي را دپلاريزه يا غيرقطبي كرده وباعث افزايش اتلاف فلز مي‌گردد. در آبهاي طبيعي حضور اكسيژن محلول معمولا سرعت فعلوانفعالات كاتدي را كنترل ميکند، معادلات ج و د، اكسيژن از طريق نفوذ به لايههاينازك واقع در سطح فلز با آن تماس پيدا ميكند و باعث افزايش خوردگي ميگردد اگرمقدار اكسيژن را كه به سطح فلز نفوذ ميكند بتوان كنترل كرد واكنشهاي خوردگي قطبيخواهد شد. اين عمل دقيقاً مكانيزم كار مواد بازدارنده خوردگي ميباشد، اين مواد باتشكيل يك فيلم نفوذ ناپذير مانع نفوذ اكسيژن به منطقه كاتدميگردند.
    قطبي شدن آند[1]
    سطوح آند را مي‌توان بوسيله تشكيل يك لايه نازك و نفوذناپذيراكسيد برروي آنها قطبي (پلاريزه) كرد براي اغلب فلزات با افزودن مواد بازدارندهخوردگي نوع آندي مثلكرومات، نيتريت و... ميتوان چنينفيلمي را ايجاد نمود. زماني كه فعل و انفعالات شيميايي خوردگي كاملاً قطبي شدند،گويند فلز در حالت انفعالي (غيرفعال) ميباشد و اختلاف پتانسيل بين آند و كاتد وجودندارد. يونهاي كلرايد و سولفات استعداد نفوذ در لايههاي غيرفعال و ايجاد منطقه آنديك بسيار فعال را دارند و برعكس يونهاي سختي و قليائيت با تشكيل رسوب يكنواخت حالتبازدارندگي دارند.
    واقطبش[2]
    در مكانيزم خوردگي الكتروشيميايي اكسيژن موجود در الكتروليت خنثيبا هيدرژن مولكولي تركيب شده و توليد آب مينمايد، اين پديده باعث افزايش ميزانخوردگي ميشود. در اينجا اكسيژن به عنوان عامل واقطبش عملمينمايد.[5]
    معرفي ميكروارگانيسم هاي مؤثر درخوردگي ميكروبي و مشكلات ناشي از عدم كنترل آنها در برج‌هايخنك‌كننده:
    محيط‌هاي آبي محل مناسبي جهت رشدو تكثير ميكروارگانيسم‌ها از نظر دما، مواد غذايي،pHو ... مي‌باشند. ميكروارگانيسم‌هاي مؤثر در خوردگي فلزات شاملگروه هوازي و بي‌هوازي مي‌باشند. فعاليت ميكروارگانيسم‌ها باعث خوردگي لوله‌هايفلزي، كاهش راندمان مبدل‌هاي حرارتي، بايوفولينگ و نابودي چوبهاي برج خنك‌كننده ودر نهايت باعث كاهش عمر مفيد دستگاه‌هاي عملياتي و سيستم‌هاي برج خنك‌كنندهمي‌گردد.
    ميكروارگانيسم‌هاي موجود در سيستم‌هايبرج خنك‌كننده عبارتند از: باكتري‌ها، جلبك‌ها و قارچ‌ها كه معرفي مي‌گردند (جدول 1و 2) [9].


    [1]
    . Anodic polarization

    [2]
    . Depolarization





    [1]
    . Cathodic polarization

    [2]
    . polarization



    [1]
    Back wash

    [2]
    . Batch

    [3]
    . Continous
    حفاظت کاتدی و اصول آن
    حفاظت کاتدي (کاتوديک) چيست؟

    امروزه خوردگي شيميايي فلزاتاز جمله مشكلات اساسي و هزينه ساز صنايع بزرگ به خصوص صنعت نفت، گاز، پتروشيمي،نيروگاهي، آب و فاضلاب و … ميباشد. لوله هاي انتقال و توزيع سوخت و آب، اسكله ها،كشتي ها، كندانسورها، دكلهاي انتقال نيرو، مخازن ذخيره سوخت و ديگر سازه هاي مدفون (و يا غوطه ور) در يك الكتروليت متناسب با شرايط موجود و با توجه به ساختارمتالورژيكي خود ، خورده شده و بعد از مدتي كار يك سيستم و پروسه فعال را مختل كردهو منجر به ضرر و زيانهاي غير قابل پيش بيني مي شوند.
    اين مبحث باعث انگيزه انجام تحقيقات وسيعي در اين زمينه شده است تاروشهاي عملي مقابله با خوردگي شيميايي فلزات به عرصه ظهور برسد. در خصوص پيشگيري ازخوردگي لوله هاي مدفون، كف مخازن روزميني و مخازن زير زميني نتيجه تحقيقات وآزمايشات انجام شده دو روش عمده زير ميباشد:

    1)
    استفاده از انواع پوشش
    2)
    استفاده از سيستم حفاظتكاتديك

    از آنجائيكه پوششهاي موجود هيچ يك دارايراندمان 100% نمي باشند لذا داشتن يك سيستم مكمل جهت حفاظت از خوردگي سازه هايمدفون الزامي به نظر ميرسد. روش تكميلي ياد شده سيستم حفاظت كاتديك ميباشد كه دراين روش با كاتد كردن سازه در حال خورده شدن (كه قبلاً آند بوده است) ميتوان ازخوردگي آن جلوگيري نمود.
    كاتد كردن سازه با جايگزيني يكمنبع تامين كننده الكترون انجام پذير است كه اين منبع تامين كننده يك منبع الكتريكيو يا يك فلز فعال تر (آندتر) از سازه مدفون ما ميباشد. بديهي است استفاده از هريكاز روشهاي ياد شده مستلزم صرف هزينه هاي اقتصادي ميباشد ولي با يك بررسي كارشناسيميتوان نتيجه گرفت كه صرف هزينه هاي اوليه جهت پوشش دادن سازه و نصب سيستم حفاظتكاتدي نه تنها از خطرات جانبي در آينده جلوگيري ميكند بلكه هزينه هاي مربوط بهتعويض قطعات، تعميرات و جبران خسارات و زيانهاي وارده را كاهش داده و هزينه هايلازم جهت نصب چنين سيستم هايي را از نظر اقتصادي توجيه پذيرترميسازد.
    عوامل بسياري در تعيين و انتخاب روش حفاظتكاتدي موثر ميباشند كه از آن جمله ميتوان به : شرايط الكتروليت، امكان دسترسي بهبرق، امكان وجود بازرسي هاي آتي، شرايط سازه هاي مجاور، جريانهاي سرگردان، نوع وكيفيت پوشش، مدت زمان طراحي سيستم، شرايط اقتصادي و . . . اشارهنمود.
    شرايط اقتصادي يكي از مهمترين عوامل موثر درانتخاب سيستم مي باشد كه در نهايت بايد يك حالت بهينه فني ـ اقتصادي ايجاد شود. دراصل، طراحي يك سيستم حفاظت كاتدي زماني موفقيت آميز خواهد بود كه تمامي شرايط فوقدرآن مد نظر قرار گرفته باشد.



    1-1-
    رفتارفلزات مدفون و غوطه ور در زمان استفاده از سيستم حفاظتكاتديك

    هرگاه يك فلز در تماس با يك الكتروليتخورده شود، در اين صورت با آزاد شدن الكترون، يون هاي مثبت به داخل الكتروليت منتقلميشوند. در اين حالت الكترون هاي اضافي در فلز باقي مي مانند. اين فرايند در موردآهن به صورت زير بيان مي شود:
    Fe––› Fe2+ + 2 e


    خوردگي توسط انتقال جريان الكترون از فلز به الكتروليت صورت مي گيرد كهبه دنبال آن يونهاي مثبت به سمت الكتروليت و الكترون ها به سمت فلز حركت ميكنند. نواحي كه اين جريان از آنها عبور ميكند را مناطق آندي و واكنش مربوطه را واكنش آنديمي نامند (در بخشهاي بعدي به آن اشاره كامل خواهد شد). اكثر اوقات يونهاي فلزي بايونهاي منفي داخل الكتروليت واكنش داده و محصولات خوردگي تشكيل شوند (براي مثال زنگآهن در فولاد). بطور عمده اين واكنش ها اثري بر روي واكنش خوردگي نمي گذارند مگر درزمانيكه محصولات ناشي از خوردگي، مقاوم در برابر تهاجمات خوردگي باشند. در نهايتبايستي از نظر بار الكتريكي يك تعادل برقرار شود. جهت متعادل شدن واكنش از نظر بارالكتريكي، بايد يك جريان از محلول (الكتروليت) به سمت فلز حركت كند و الكترون ها درمحيط ديگري كه منطقه كاتدي ناميده ميشود، مصرف ميشوند. ميزان انتقال جريان در اينواكنشها سرعت خوردگي را تعيين مينمايد. براي مثال در مورد فولاد به ازا هر اتمي كهوارد الكتروليت ميشود دو اتم در سطح فلز آزاد ميشود.
    ميزان اختلاف پتانسيل بين سطح فلزات و الكتروليت آنها با توجه بهدانسيته جريان و جهت انتقال جريان تغيير ميكند. اين تغييرات را پلاريزاسيون مينامند. اختلاف پتانسيل فوق بستگي به نوع واكنش هاي شيميايي در سطح فلز دارد. پتانسيل فصل مشترك فلز ـ الكتروليت را ميتوان با استفاده ار الكترود مرجع اندازهگيري نمود. ميزان اختلاف پتانسيل اندازه گيري شده نه تنها بستگي به نوع فلز والكتروليت دارد بلكه نوع الكترود مرجع نيز در آن تاثير گذار ميباشد. لذا در اندازهگيريهاي اختلاف پتانسيل بين خاك و سازه مدفون فولادي عموماً از الكترود مرجع مس ـسولفات مس استفاده ميشود.

    1-2-
    اصول كلي حفاظتكاتدي

    لازمه انجام واكنشهاي مربوط به خوردگيوجود مناطق آندي و كاتدي ميباشد. اگر الكترون هاي سازه از يك منبع خارجي تامينشوند، ميزان حركت يونهاي مثبت از سطح فلز كاهش و سرعت واكنش كاتدي افزايش مي يابد. اگر پتانسيل فلز با اعمال الكترونهاي خارجي از مقدار Ecorr (پتانسيل خوردگي فلز در حالت طبيعي ) بهمقدار Ep (پتانسيل حفاظتي فلز پساز اعمال حفاظت كاتدي) كاهش يابد (اين مقادير در نمودارهاي مربوط به پلاريزاسيونفولاد موجود است)، در نتيجه جريان آندي و يورش خوردگي متوقف شده و حفاظت كاتدي حاصلمي گردد. جريان كاتدي (IP) توسطيك منبع خارجي تامين ميگردد، كه اين منبع خارجي يا يك آند فلزي (روش آندهاي فداشونده) و يا يك منبع ولتاژ برقDC (روش اعمال جريان) ميباشد.
    1-2-1-
    معيارهاي حفاظت كاتدي

    اكثر فلزات در برابر خوردگي با اعمال جريانحفاظت مي شوند، بطوريكه پتانسيل آنها در پتانسيل منفي تر از پتانسيل سازه نسبت بهمحيط قرار گيرد. جريان مستقيم از طريق آندهاي فداشونده (SACRIFICIALANODES) و يا سيستم اعمالجريان(IMPRESSED CURRENT) فراهم ميشود. تعيين و اندازه گيري پتانسيل تحت حفاظت نسبت به محيطاطرافش ميتواند نمايانگر درجه و ميزان حفاظت آن سازه باشد. از استانداردNACE - RPO169-83به عنوان معيار سيستم حفاظت كاتدي سازه هاي غوطه ور يا مدفون استفادهمي شود. در خيلي از شرايط ميتوان خوردگي را در مقادير كمتر نيز حفاظت كاتدي نمود. اين معيار در استانداردNACE-RPO169-83تحت عنوان ” كنترل خوردگيخارجي سيستم هاي خطوط لوله فلزي غوطه ور يا مدفون” بيان شده است. پتانسيل mv 850- براي اولين بار توسطR.J.Kuhnدرسال 1933 بيان شده و جهت حفاظت كاتدي سازه هاي فولادي غوطه ور و يا مدفون پذيرفتهشد.
    كاربردي ترين معيار، معيار mv 850- ميباشد. معيار پتانسيل حفاظت كاتديعبارتست از اندازه گيري پتانسيل خط لوله – خاك كه اين اختلاف پتانسيل توسط الكترودمرجع مس ـ سولفات مس اندازه گيري ميشود. در انتخاب معيار حفاظت كاتدي بايد مسائلمربوط به هزينه هاي بالاي تعميرات و حفظ سرمايه هاي ملي در نظر گرفته شود كه درنهايت به شرايط محيطي، پوشش سازه و در دسترس بودن نيروي برق بستگي دارد. يك محيطخورنده كه سازه موجود در آن داراي پوشش ضعيفي باشد و يا نيروي برق در دسترس نباشد،دلالت بر استفاده از يك معيار با ضريب احتياط بالا ميكند. عدم تغيير در اصل طراحينيز اشاره بر اين امر دارد كه حفاظت كاتدي براي سازه هاي حفاظت شده، به راحتي انجامشده است. به هر حال تكنيك هاي مراقبت و مونيتورينگ قادر به حل و فصل مطلوب هزينههاي كنترل خوردگي بدون كاهش اثرات جلوگيري از خوردگي آنها ميباشد.

    1-2-2-
    مدار يك سيستم حفاظت كاتدي

    بديهي است براي داشتن يك سيستم حفاظت كاتديبايستي مدار الكتريكي آن كامل باشد براي اين منظور لازمست تا اجزا تشكيل دهنده اينمدار شناخته و مورد ارزيابي قرار گيرند. بطور كلي اين اجزا عبارتنداز:

    الف)كاتد: سازهو تاسيسات فلزي مدفون و يا غوطه ور در يك الكتروليت كه بايستي با استفاده از روشحفاظت كاتدي از خوردگي شيميايي آنها جلوگيري به عمل آيد، كاتد ناميده ميشود. درواقع اين سازه فلزي قبل از نصب چنين سيستمي آند بوده و در حال از دست دادن الكترونو خورده شدن بوده است، كه با اعمال سيستم حفاظت كاتدي و قرار گرفتن در مدار اينسيستم از آند به كاتد تبديل شده و در نتيجه خوردگي آن متوقف ميشود.

    ب) آند:عنصرو يا آلياژي كه در آن واكنش آندي رخ داده و به مرور زمان و بر اساس مقدار جرياناعمالي از وزن و حجم آن كاسته ميگردد آند ناميده ميشود. جنس و آلياژ اين آندها،بسته به نوع روش سيستم حفاظت كاتدي و محيط اطراف متغير است.

    ج) الكتروليت:محيطي كه در آن تبادلالكترون و واكنش يوني اتفاق ميافتد و معمولاً از جنس خاك و يا آب ميباشد الكتروليتناميده ميشود.

    د) اتصالاتالكتريكي:جهت تكميل مدار الكتريكي يك سيستم حفاظتكاتدي و انتقال الكترونها، از كابلهاي مسي استفاده ميشود كه ايجاد اتصال آنها درباند باكسهاي مربوطه انجام مي پذيرد.

    هـ) منبعتغذيه:جهت تامين الكترون مورد نياز و اعمال اختلافپتانسيل لازم بين كاتد و الكتروليت (در روش اعمال جريان) از يك منبع تغذيهDCاستفادهمي شود. اين منبع تغذيه، جريان مستقيم مورد نياز جهت حفاظت سازه را تأمين ميكند.

    1-3-
    انواع روشهاي سيستم حفاظت كاتدي (کاتوديک يا کاتديک)

    با توجه به نوع آند بكاررفته و نحوه عملكرد، سيستم به دو روش عمده تقسيم بندي ميشود:
    -
    روش آند فداشونده(SacrificialAnodes)
    -
    روش اعمال جريان (Impressed Current)

    حال بهتشريح هريك از روشهاي فوق مي پردازيم.

    1-3-1-
    سيستم حفاظت كاتدي به روش آندهاي فدا شونده

    آندهاي فدا شونده شامل آلياژهايي از منيزيم، روي و آلومينيوم ميباشند. اين آندها در خاك يا در آب به صورت ساده و يا همراه با يك پشت بند (BackFill) مخصوص نصب ميشوند.
    اين نوع آندها در سيستمهاي حفاظت كاتديک مربوط به خطوطلولهبصورت انفرادي و يا گروهي به خط لوله تحت حفاظت كاتدي نصب ميگردند. محدوديتهايي در استفاده از اين نوع آندها وجود دارد كه مربوط به اختلاف پتانسيل فصلمشترك سازه ـ آند و ميزان مقاومت الكتريكي خاك (ρ) ميباشد. از اين روش جهت حفاظت كاتدي سازههاي كه به جريان كمي نياز داشته و يا در خاكي با مقاومت الكتريكي پائين مستقرميباشد، استفاده ميگردد. ميتوان از اين نوع آندها به صورت نواري شكل كه در تمام طولمسير خط لوله نصب ميشوند نيز جهت جلوگيري از خوردگي استفاده كرد. طبق استانداردهايIPS-E-TP-820, IPS-D-TP-711. از آندهاي فداشونده در موارد زيرميتوان استفاده نمود:
    الف - خطوط لوله با پوشش خوب كهنياز به جريان حفاظتي خيلي كمي دارند.
    ب - رفع مشكلاتمربوط به تداخل و جريان هاي سرگردان
    ج -خطوط لوله كوتاهبا پوشش خوب
    د - در نقاط مشخصي بر روي خطوط لوله (نقاطبحراني) كه ممكن است تنها چند فوت از خط لوله نياز به حفاظت داشتهباشد.
    هـ - فراهم نمودن حفاظت موقتي قسمتي از خط لولهمدفون كه در شرايط خوردگي موضعي قرار دارد. مانند منطقه عبور خط لوله از عرضرودخانه .
    و - جهت حفاظت كف مخازن رو زميني كه دارايسطح وسيعي نباشند.

    -
    آندهاي مورد مصرف روش آندفداشونده:

    انواع آندهاي مورد مصرف در روش فداشونده عبارتند از:
    1)
    آندهاي روي 2) آندهاي منيزيم 3) آندهاي آلومينيوم
    با توجه به الكتروليت موجود در يكمنطقه نوع آند مصرفي براي محيط متفاوت است و اين تفاوت ناشي از شرايط ويژهالكتروليت از جمله مقاومت ويژه، PH، رطوبت و همچنين خواص و قابليتهاي هر يك از آندهاي ياد شده ميباشد. بهعنوان نمونه آندهاي فداشونده با توجه به الكتروليت و مقدار مقاومت آن به صورت زيردسته بندي ميشوند:
    الف) آندهاي مصرفي درآب:


    مقاومت الكتريكي آب(Ohm-Cm)





    نوع آند مصرفي

    كمتر از 150





    آلومينيوم





    كمتر از۵۰۰





    روي





    بيشتر از۵۰۰

    منيزيم







    ب) آندهاي مصرفي در خاك:


    مقاومت الكتريكي خاک(Ohm-Cm)





    نوع آند مصرفي



    كمتر از 150۰

    روي

    كمتر از۵۰۰۰

    منيزيم (استاندارد)

    کمتر از۶۰۰۰

    منيزيم (پتانسيلبالا)


    ۱-3-2- سيستم حفاظت كاتدي به روش اعمال جريان

    يك سيستم اعمال جريان بايد شامل يك يا چند ايستگاه به عنوان منبع جريانDC، بسترآندي و كابل هادي جريان باشد. موقعيت اين ايستگاه ها در طول خط لوله بستگي به امكاندسترسي به نيروي برق متناوب و ميزان كاهش پتانسيل دارد. كاهش ميزان حفاظت يك خطلوله از محل نصب سيستم حفاظت كاتدي نيز بستگي به مقاومت طولي خط لوله و هدايت پوششلوله دارد.
    معيار احداث بسترهاي آندي عمودي و افقيبايستي بر اساس استانداردIPS-C-TP-820بوده و انتخاب محل بسترهايمذكور بايستي پس از بررسي نتايج مربوط به بازرسي و كنترل محيطي صورت پذيرد. حداقلفاصله بستر آندي از خط لوله مدفون يا سازه هاي مجاور بستگي به مقدار جريان موردنياز سيستم داشته و با افزايش مقدار جريان اين فاصله نيز افزايش خواهديافت.
    معيار اين فاصله عبارتست از : 50 متر براي 30آمپر، 100متر براي 50 آمپر، 200 متر براي 100 آمپر و 300 متر براي 150 آمپر ميباشد. ابعاد كابلهاي مورد مصرف در اين سيستمها بايد به گونه اي انتخاب شوند كه در زمانيكهحداكثر جريان طراحي از مدار عبور مي كند، ميزان افت ولتاژ كمتر از 5 درصد باشد. اطلاعات مربوط به كابلها و سيمهاي مورد مصرف در اين نوع سيستمها در استانداردIPS-M-TP-750وDIN VDE 027موجود ميباشد. تمامي كابلهاي مربوط به خروجي از قطب مثبت ركتيفاير بهبسترهاي آندي بايد پيوسته بوده و حداكثر 150 متر طول داشته باشند.
    سيستم حفاظت كاتدي به روش اعمال جريان بهتر است در خارج از محلي كه خطرانفجار و آتش سوزي دارد طراحي و نصب گردد، مگر در حالات استثنا كه بايستي بر اساساستانداردهايDIN-VDE-0165و ياEN50014 , AFK-EmpfehlungNo.5 صورت پذيرد. به عبارت ديگر استفاده از ترانسفورمر ـركتيفاير، جعبه هاي اتصال (BOND BOX)،جعبه هاي اندازه گيري اختلاف پتانسيل(TEST POINT OR TEST BOX) بايستي از نوع ضد انفجار طراحيو مورد استفاده قرارگيرد.

    -
    آندهاي مورد مصرفدر روش اعمال جريان:

    - آند چدن پر سيليس (سيليكون)
    - آند آلياژ دور يكلر
    - آند چدن پر سيليس كروم دار
    - آند پلاتينيوم
    - آند چدن پرسيليس موليبدندار
    - آندگرافيتي

    عمده ترين آندي كه در روش اعمال جريان مورداستفاده دارد آند چدن پرسيليس ميباشد، اين نوع آندها در پشت بندهاي كربني كارآييآندهاي گرافيتي را داشته و در خاكهايي با مقاومت ويژه كم نسبت به آندهاي گرافيتيارجحيت دارند. همچنين امكان استفاده از اين آندها در دانسيته جريان هاي بالا وجوددارد. عناصر تشكيل دهنده اين نوع آلياژ عبارتند از : 95/0% منگنز, 7/0%سيليسيم, 4/14%کربن و مابقي آهن.
    كارآيي يك آند با نحوه نصب آنداراي رابطه مستقيم مي باشد، به قسمي كه يك عايق بندي ضعيف در محل اتصال به واسطهخوردگي حفره اي به مقدار قابل توجهي از كار آيي آند مي كاهد. عمر مفيد آندهاي مذكورمعمولاً تا زماني در نظر گرفته ميشوند كه قطر آنها در حدود 33% كاهش يابد كه البتهاين مقدار بستگي به قطر اوليه و ميزان خوردگي حفره اي و همچنين تنشهاي مكانيكيدارد. بنابراين دو برابر كردن سطح مقطع آند عمر مفيد را بيش از دو برابر افزايشخواهد داد.اين نوع آلياژ داراي مقاومت بسيار بالايي در بسياري از محيطهاي خورندهميباشد. استثنا قابل توجه در اين مورد اسيد فلوريدريك است، در حقيقت اين چدنهامقاومترين فلزات و آلياژهاي تجارتي (غير گرانبها) ميباشند.
    مشخصات برخي از آندهاي مورد مصرف در سيستمهاي حفاظت كاتدي به روش اعمالجريان در جدول 1-1 آورده شده است.

    1-4-
    انواعبسترهاي آندي

    معمولاُ با توجه به اطلاعات بدستآمده از منطقه و اطلاعات حاصل از اندازه گيري مقاومت خاك و همچنين تجمع و محلاستقرار ديگر تاسيسات، ساختمانها و سازه ها، نوع و تعداد بستر انتخاب و در بخشطراحي با توجه به آن اقدامات لازم جهت انجام محاسبات صورت ميگيرد.
    با توجه به شكل فيزيكي و نوع پشت بند مصرفي، بستر هاي آندي به دو دستهعمده بسترهاي آندي سطحي و بسترهاي آندي عميق تقسيم ميشوند:

    1-4-1-
    بستـرهاي آندي سطحـي

    اين نوعبسترها كه عمق بستر بندرت به بيش از 5 متر ميرسد، خود به دو دسته عمده زير تقسيمميشوند:

    الف ـ بستـر آنديافقـي

    در اين نوع بسترها، آندهاي مورد مصرف بهشكل افقي و در كانالي به عرض 60 سانتي متر و به عمق 2 الي 3 متر و به فاصله مركز بهمركز 3 الي 8 متر از يكديگر قرار ميگيرند.
    پشت بند ايننوع بسترها كك ميباشد كه بايستي به ضخامت 15 سانتي متر زير و روي آندها را بپوشاندبه عبارت ديگر استوانه اي به قطر 30 سانتي متر (يك فوت) و به طول بستر آندي از كككوبيده شده داشته باشيم كه آندها در مركز آن قرار گرفته اند. در اين نوع بسترها جهتانتقال گازهاي حاصل از واكنشهاي شيميايي به سطح زمين از لوله هاي ونت به قطر 4 الي 8 اينچ و از جنس آزبست استفاده ميشود.
    اين نوع بستربدليل صرفه اقتصادي در حفاري و آماده سازي بستر و استقرار آندها بيشتر از بسترهايديگر مورد استفاده قرار ميگيرند. ولي بدليل آنكه در اين بسترها با تعداد آند زيادبه حفاري در طول زيادتري نيازمي باشد و لذا در اماكن و مناطقي كه از بابت تملك زمينو تجمع سازه ها و تاسيسات ديگر محدوديت دارد استفاده از چنين بسترهايي محدوديتخواهد داشت.

    ب - بستـر آنديعمـودي

    در اين نوع بسترها كه بيشتر در شبكه هايتوزيع گاز طبيعي، نفت، آب، مخازن ذخيره سازي و … استفاده ميشود.آندها به صورت عموديو در كانالهايي به قطر 30 الي 50 سانتي متر و به عمق حدود 3 متر و به فاصله مركز بهمركز 3 الي 10 متر از يكديگر قرار مي گيرند كه پشت بند ككي آندها بايستي به قطرحداقل 30 سانتي متر دور تا دور آندها را پركند . در اين نوع بسترها نيز از لوله هايونت جهت تسهيل درخروج گازهاي حاصل از واكنشهاي شيميايي استفاده به عمل مي آيد .

    1-4-2-
    بستـرهاي آنديعميـق

    از بسترهاي آندي عميق در مناطقي كه طبقاتبالايي خاك مقاومت مخصوص بالايي داشته و يا امكان ايجاد بسترهاي آندي افقي و عموديغير ممكن باشد و همچنين در مواقعي كه تجمع سازه هاي مدفون را داشته باشيم، استفادهبه عمل مي آيد. اين نوع بسترها عبارتند از:

    الف - بستر آندي چاهي خشك

    در اين نوع بسترها آندهابه صورت عمودي و در يك راستا در كانالي به قطر 30 الي 50 سانتي متر و به عمقي كهبستگي به تعداد آندها دارد قرار ميگرند . در اين نوع بستر پشت بندآندها كك مي باشدو لوله ونت مصرفي از جنس فولاد گالوانيزه مي باشد. عمق اين نوع بستر بستگي به تعدادآندهاي مصرفي دارد ، به عبارت ديگر با توجه به اينكه فاصله مركز به مركز آندهاعموما” 3 متر مي باشد و اولين آند تا سطح زمين بايستي حداقل 5/1 متر و آخرين آند تاانتهاي بستر حداقل 5/0 متر فاصله داشته باشد ، لذا مي توان در محاسبات عمق بستر رابدست آورد . ولي لازم به ذكر است كه بنا به نظر طراح فاصله ها و عمق مذكور قابلتغيير مي باشد.

    ب - بستر آندي چاهيِ تر

    اين نوع بستر مشابهت زيادي با بستر آندي چاهيخشك دارد با اين تفاوت كه در اين نوع بستر پشت بند مصرفي براي آندها آب مي باشد، بهعبارت ديگر عمق اين نوع بسترها بستگي به عمق سفره هاي آب زيرزميني دارد، يعنيبايستي حفاري تا عمقي انجام پذيرد كه آب كل عمق بستر را در برگرفته و حداقل 12 متراز سطح آند اول بالاتر قرارگيرد .
    در اين نوع بسترآندها به وسيله طناب مخصوص و با استفاده از قرقره در مركز چاه قرار مي گيرند وفاصله مركز به مركز آنها كه بايستي حدود 3 متر باشد به وسيله طناب ها تنظيمميگردد.
    كابل آندها مانند بستر چاهي خشك بوسيله دو راهياتصال كابل به كابل بستر متصل شده و از هر آند يك كابل به باند باكس مثبت كهمعمولاً يك باند باكس هشت ترميناله مي باشد اتصال پيدا مي كند. در اين نوع بستر جهتجلوگيري از ريزش كانال معمولاً از يك لوله فولادي به قطر 12 اينج ( قطر بستر ) و بهطول بستر استفاده ميگردد. از اين نوع بسترها بدليل هزينه بالاي حفاري و نصب آندهادر مواقع خاصي استفاده مي گردد.

    ۱-5- نحوه حصول اطمينان از عملكرد يكسيستم حفاظت كاتدي

    پس از نصب يك سيستم حفاظتكاتدي، جهت حصول اطمينان از عملكرد سيستم، بايد اختلاف پتانسيل بين خاك و سازه فلزيمدفون اندازه گيري شود. اساس اين اندازه گيري اعمال يك جريان (حاصل از اختلافپتانسيل بين خاك و سازه تحت حفاظت) ميباشد. اختلاف پتانسيل مذكور در اثر افت ولتاژسازه مدفون، مقاومت بين سازه و خاك و در نهايت پلاريزاسيون ميباشد. واضح است كه باتوجه به شرايط خاك از نظر مقاومت الكتريكي و درجه عايقي پوشش مصرفي و سطح لوله،مقدار جريان مورد نياز جهت جلوگيري از خوردگي سطح سازه مدفون، متفاوت خواهد بود. لذا نميتوان مقدار جريان را به عنوان معياري جهت ارزيابي نحوه عملكرد سازه مدفونتحت حفاظت كاتدي استفاده نمود. بنابراين پتانسيل جديدي را كه لوله بعد از اعمالجريان حفاظتي اختيار خواهد كرد به عنوان معيار محسوب مينمايند. استانداردهايي جهتكمك به اندازه گيري نحوه عملكرد يك سيستم حفاظت كاتدي تهيه شده است كه در بخش معيارهاي حفاظت كاتدي به آن اشاره گرديد. معيار فوق براي سازه اي از جنس فولاد درالكتروليتي مانند خاك برابرmv850- ميباشد. مقدار منفي بيانگر اين واقعيت است كه سازه نسبت به خاك از پتانسيل منفي تريبرخوردار بوده و جريان حفاظت كاتدي به سمت محيط هاي آندي جرياندارد.

    اندازه گيري اين اختلاف پتانسيل بايستي درفواصل مكاني و زماني مشخص كه توسط طراح سيستم تعيين ميگردد انجام پذيرد. در فواصلمكاني مشخصي كه حداقل هر 500 متر و حداكثر هر 1000 متر ميباشد با نصب يك ايستگاهاندازه گيري پتانسيل سهل تر خواهد گرديد. اين ايستگاه كه تست پوينت (TEST POINT) ناميده ميشودشامل جعبه اي است كه كابل متصل شده به لوله (و يا هر سازه فلزي تحت پوشش سيستمحفاظت كاتدي) به روش جوش احتراقي (CADWELD) در آن مستقر گرديده است. تااندازه گيري مذكور توسط يك ولتمتر و نيم پيل مرجع مس ـ سولفات مس انجام پذيرد. استفاده از نيم پيل مرجع دائمي در كف مخازن روزميني با قطر زياد از جمله مواردي استكه طراح جهت سهولت و امكان انجام اين اندازه گيري بايستي به آن توجه داشتهباشد.
    معيار اختلاف پتانسيل ياد شده بستگي به شرايطمحيطي متفاوت خواهد بوده به عنوان نمونه در صورتيكه وجود خوردگي ميكروبيولوژي درخاك منطقه به اثبات رسد اين معيار يعني mv 850- حداقل mv 100- شيفت پيدا كرده و به mv 950- ميرسد به عبارت ديگر در مناطقي كه خوردگي ميكروبيولوژي در خاك منطقه وجود داشتهباشد اين معيار حداقل mv 950- خواهد بود. همانطور كه اين معيار داراي حداقل ميباشد بديهي است كه داراي رنجي بهعنوان حداكثر مقدار مجاز نيز باشد. حداكثر مقدار اين معيار بستگي به نوع پوشش لولهدارد. بدين ترتيب كه اگر پوشش لوله از نوع سرد باشد اين مقدار نبايستي از mv 1600- تجاوز نمايد و درصورتيكه پوشش لوله از نوع گرم باشد حداكثر مقدار مجاز اين معيار mv 2200- خواهد بود. در صورتيكه حداكثر معيارفوق رعايت نشود پوشش لوله آسيب ديده و عواقب بعدي را به دنبال خواهدداشت.

    1-6-
    واكنش هاي آندي

    يكي از واكنشهايي كه پس از نصب و راه اندازيسيستمهاي حفاظت كاتدي انجام پذير ميباشند واكنش آندي مي باشد. واكنشهاي اكسيداسيونزيادي وجود دارند كه ممكن است روي سطح يك آند رخ دهد. جنس آندهاي مورد مصرف و شرايطمحيط باعث ميگردند تا يكي از واكنشهاي فوق بر ديگر واكنشها غلبه كرده و عموماًاتفاق افتد.
    سه واكنش اوليه كه در سطح آند رخ ميدهندعبارتند از :
    -
    اكسيد اسيون فلز
    -
    متصاعد شدن اكسيژن
    -
    متصاعد شدن كلر

    در آندهاي فدا شونده واكنش آندي اوليه بطور نرمالاكسيداسيون فلز است يعني: M –› Mn+ + ne

    با توجه به اينكه در خاك هاي خنثي يون فلزناپايدار است و با آب براي تشكيل يك هيدروكسيد يا اكسيد هيدراته و يون هاي هيدروژنواكنش انجام مي دهد بنابراين داريم كه:M+ + H2O –› MOH + H+

    اين واكنش ها تا زمانيكه مصرف آندها ادامه دارد باعث بوجود آمدن جريان ميگردند. براي آندهاي مورد مصرف درروش اعمال جريان در مناطقي كه خاك و آب داراي ميزان خيلي كمي از كلريد هستند واكنشاوليه آندي متصاعد شدن اكسيژن است يعني در اين آندها واكنش زير رخ مي دهد: 2H2O –› O2 + 4H+ +4e

    وقتيكه يون هاي سولفات در الكتروليت حضور داشته باشند واكنشهايي مشابه واكنشهاي زيراتفاق مي افتد:

    SO42-+ 2H2O –› 2H2SO4 + O2 + 4e

    2H2SO4 –› SO42- + O2 + 2H+

    2Cl- –› Cl2 + 2e

    اكسيژن مجدداً آزادشده و هيدروژن بصورت يون تشكيل ميگردد. متصاعد شدن كلر واكنشي است كه روي سطحآندهاي روش اعمال جريان در حضور يون هاي كلريد اتفاق مي افتد، سپس گاز كلر با آببراي تشكيل اسيد هيپوكلرو و هيدروكلريك واكنش خواهد داد. اسيد هيپوكلرو تجزيه شده ويون هاي هيدروژن نيز متناسب با مقدار اسيد تشكيل مي شوند. بنابراين متصاعد شدن كلر pH در سطح آند را كمتر از متصاعدشدن اكسيژن كاهش مي دهد. در جائيكه ذغال كك بعنوان مواد پر كننده براي آندهاي روشاعمال جريان استفاده مي شود واكنش هاي آندي در سطح ذرات كك بصورت زير اتفاق ميافتند:
    C + H2O + 2e –› CO + 2H+

    C + 2H2O + 4e –› CO2 + 4H+

    تمام واكنش هاي اصلي آندي باعث كاهش pH محلول در محدوده آند ميشوند. پتاسيل استاندارد400/0+ redox ولت براي يونهاي هيدروكسيل و 136/0 + ولت براي يونهاي كلر است . ازيك ديدگاه ترموديناميكي اگر يك آند درالكتروليتي حاوي هر دو يون پلاريزه شده باشد ابتدا اكسيژن متصاعد شده و بعد از آن كلر متصاعد مي شود. در عمل اين مسئله لزوماً واقعيت ندارد. بعنوان مثال در آندهاي گرافيتي افزايش ولتاژ براي متصاعد شدن اكسيژن خيلي بيشتر اززماني است كه براي متصاعد شدن كلر داريم. در يك آند گرافيتي هرگاه از طريق آند واكنش پلاريزه شدن انجام شود قبل از هر چيز گاز كلر متصاعد ميگردد.



  10. 4 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  11. #6
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    نقشباكتريهاي احياء كننده سولفات در طبيعت

    موجودات زنده از نظر تغذيه به سه گروه: توليد كننده، مصرف كننده وتجزيه كننده تقسيم ميشوند، جلبكها جزء توليد كننده ها، پروتوزوئرها جزء مصرفكنندهها و باكتريها و قارچها جزء تجزيه كنندهها هستند.
    نقش گروه اخير (قارچها و باكتريها) در طبيعت تجزيه مواد آلي (لاشهحيوانات، گياهان و فضولات حيوانات) و تبديل آنها به مواد معدني مورد نياز توليدكنندهها (گياهان) است. بدون وجود باكتريها جهان انباشته از مواد آلي و تهي ازموادمعدني خواهد بود كه اين به معناي مرگ گياهان و ساير موجودات و حيوانات و از بينرفتن حيات در كره زمين است. چرخش عناصر، ازت، فسفر، اكسيژن، گوگرد و.... در طبيعتبدون حضور ميكروارگانيزمها غير ممكن است.
    تغييراتمحيطي ناشي از احياي سولفات اثرات و نتايج زيست محيطي و اقتصادي متعددي دارد،تپههاي شني كه در اطراف دهانه رودخانهها و بنادر تشكيل ميشوند نرم و سياه و داخلآنها بد بوست، كه بتدريج به ماسه رنگي تبديل ميشوند.
    در داخل تپههاي شني باكتريهاي احياء كننده سولفات (خارج از دسترسهوا) مواد آلي كه در داخل آنها هست را مصرف كرده و هيدرژن سولفوره توليد ميكنند. تركيبات آهن موجود در ماسه باH2Sواكنش داده و سولفيد آهن سياهرنگ تشكيل ميشود، سولفيد آهن بصورتذرات ريزي است كه در معرض هوا به اكسيدهاي آهن به رنگ زرد اكسيد مي‌شود. بنابراينماسه در معرض هوا به ماسه رنگي تبديل ميگردد.
    بيشتر رسوبات طبيعي گوگرد ناشي از فعاليت اين باكتريهاست،‌ در طولدوران گرم و سوزان زمين شناسي (دوران ژوراسيك) (280-130) ميليون سال قبل درياهايبزرگي كه قسمتهايي از كره زمين را پوشانده بودند خشك شدند. سولفيد تشكيل شده توسطباكتريهاي احياء كننده سولفات در اثر تجزيه گياهان دريايي بوسيله ساير باكتريها ياخودبخودي به گوگرد عنصري اكسيد شدند.
    اين داستانتشكيل يكي از مواد خام اصلي قرن بيستم براي توليد اسيد سولفوريك است كه از گوگرد ياپيريتهاي آهن تهيه ميشود.[2]


    نقشباكتريهاي احيا كننده سولفات (SRB) در صنعتنفت
    فعاليت اين باكتريها در صنعت نفت باعثخوردگي خطوط لوله، دستگاهها، وسايل و
    ماشين آلات، مسدود شدن چاههاينفت و گاز، ترش شدن نفت و گاز و.... ميگردد. موارد متعددي از خوردگي ميكروبي درخطوط لوله آب و نفت، سيستمهاي تصفيه فاضلاب، سيستم‌هاي تزريق آب و
    پمپ‌ها،مخازن فرآورده هاي نفت و آب گزارش شده است. لولههاي فلزي به مرور زمان در اثرفعاليت اين باكتريها در شرايط بي هوازي خورده شده و در عرض چند سال سوراخميشوند.
    خوردگي آهن در غياب اكسيژن بوسيله اينباكتريها اولين بار در سال 1934 در هلند بوسيله
    vander vlughtوVonwolzgenگزارشگرديد. اين محققين خوردگي بي هوازي را ناشي از فعاليت باكتريهاي احيا كننده سولفات (دي سولفوويبريو دي سولفوريكانس) دانستند.
    در سال 1926 Bastinتشخيص داد كهدي سولفوويبريو در مخازن نفت قادر به رشد و تكثير است. فلزاتي چون آهن، فولاد، چدن،روي، آلومينيوم و مس ميتوانند بوسيله اين باكتريها مورد حمله قرارگيرند.
    نفت خام معمولاً حاوي مقادير كمي گوگردبصورت مركاپتانها، سولفيدها، هيدرژن سولفوره و گوگرد آزاد است، هيدرژن سولفورهاحتمالاً بوسيله باكتريهاي احيا كننده سولفات در رسوبات حاوي نفت بوجود آمدهاست.تجمع هيدرژن سولفوره در نفت و گاز باعث ترش شدن آنها گشته و از احتراق آن دياكسيد گوگرد كه تركيبي خورنده است توليد ميشود.هيدروژن سولفوره با يونهاي آهنواكنش انجام داده و تشكيلFeSميدهد كه باتوده سلولهاي باكتريهاي احيا كننده سولفات مخلوط شده و باعث مسدود شدن منافذ طبقاتحاوي نفت،‌شير آلات، صافيها و ساير وسايل حوزه نفتي ميشود.
    براي افزايش بهره برداري از چاههاي نفت، از روشهاي مختلفي ازجمله تزريق آب و گاز به چاه استفاده مي‌شود، ورود باكتريهاي احياء كننده سولفاتهمراه با آب تزريقي به چاه باعث توليدH2Sو در نتيجه ايجادFeSميگردد.FeSحاصل از فعاليت باكتريها در چاهها و دستگاههاي حوزه نفتي با توده سلولهاي باكتريهامخلوط شده و باعث مسدود شدن منافذ و كاهش نفوذپذيري مخزن ميگردد.
    نفت يا مواد بازدارنده خوردگي باFeSيك توده روغني چسبنده توليد ميكند كه عامل مسدود كننده و مقاومبه اسيد است.
    آلودگي ميكروبي مخازن فرآوردههاينفتي (سوختهاي هواپيما- نفت سفيد و گازوئيل) به دفعات گزارش شده است.[3]

    شاخصهاي شناسايي باكتريهاي احيا كنندهسولفات (SRB) در صنعت
    ü آب حاويباكتريهايSRBبه تدريج ترش وسياه ميشود.
    ü ازبين رفتن سريع فلز در سيستم بخصوص در فصل مشترك آب و نفت، نقاط ساكن ودر
    قسمتهايتحتاني مخازن
    ü وجودسولفيد آهن همراه با حفره[1]و تاول[2]
    ü با فعال شدن هيدرژن كاتدي در پيل خوردگي،دي‌سولفوويبريو به عنوان واقطبش كاتدي[3]عملميكند.
    ü با توليدهيدرژن سولفوره آهن بتدريج دچارخوردگي ميشود، خوردگي قسمتهاي بيروني لولههاي دفنشده در خاك نيز ناشي از وجود اين باكتريها ميباشد، شكل و ساختمان ظاهري اينباكتريها كاملاً مشابه و همگي شفاف و براق در ميكروسكوپهاي نوري قابل رويتهستند.
    ü اينباكتريهاي نوسان كننده بي هوازي انرژي رشد خود را از دو نيم واكنش، اكسيداسيون موادآلي يا گاز هيدرژن و ديگري احياء سولفات معدني به سولفيد تامينمينمايند.
    ü اگرباكتري انرژي خود را از يك منبع آلي نظير سديم لاكتيت كسب نمايد به آن باكتريهتروتروفيك[4]گويند.
    اگر باكتري انرژي خود را از يك منبع معدني مثل اكسيد كردن گازهيدروژن به دست آورد به آن
    باكتري اتوتروفيك[5]گويند.

    اينباكتريها در برابر وجود هوا بسيار حساس هستند، محيط زيست آنها بايد كاملاً عاري ازاكسيژن باشد، و اين شرايط محدود رشد بدان معني نيست كه اين گونه باكتريها در شرايطهوازي فعال نمي باشند بلكه اين باكتريها قادرند در يك محيط هوازي بصورت موضعي محيطبي هوازي رشد خود را فراهم سازند. اين باكتريها در ته گودالها و نيز در اعماق (7-5) مايلي اقيانوسها يافت شده اند، وجود اين باكتريها سبب سياه شدن شنهاي درياي سياهشده است كه انتخاب نام درياي سياه نيز بدين علت است.
    اين ارگانيزمهاي بي هوازي[6]در سيستم فاضلاب شهري همراه با باكتريهايهوازي[7]و باكتريهاي دوگانه زيست[8]رشد مينمايند.
    باكتريهاي دو زيست باكترهايي هستند كه با تغيير در ارگانيزم خودقادرند در محيط هوازي و
    بيهوازي زيستنمايند.
    روش آزمايشگاهي تشخيص اين باكتريهااستفاده از متد استانداردAPI-Method RP38ميباشد. در اين روش غذاي مناسب باكتري شامل نمك سولفات معدني ويك ماده آلي جهت فعاليت آنزيم باكتري دي سولفوويبريو پيشنهاد شده است. محيط كشت دراتو كلاو استريل شده و به منظور نشان دادن حضور باكترهاي احيا كننده سولفات تركيباتدو ظرفيتي آهن پس از اتو كلاو و سرد شدن به غذاي باكتري اضافه ميگردد كه با احياءسولفات به سولفيد تركيبات سياهرنگ سولفيد آهن تشكيل ميگردد.
    دي سولفوويبريوها از انواع باكتريهاي غلافدار و چسبنده اي[9]هستند كه به سطوح ميچسبند و شروع به رشد وتكثير مينمايند. از اين رو شمارش تعداد باكتريهاي شناور[10]موجود در يك نمونه آبي تقريبي بود و شاملكل باكتريهاي سيستم نمي باشد.[3]
    پتانسيل اكسيداسيون احيا[11]
    يكي از فاكتورهاي مشخصه فعاليت باكتريهاي احيا كننده سولفات (SRB) كنترل پتانسيلاكسيداسيوناحياء محيطميباشد.
    چنانچه اين عدد كمتر ازmv 100- باشد دليلبر وجود و فعاليت باكتريهايSRBدر محيط ميباشد، رشد باكتريهايSRBدر پتانسيل اكسيداسيوناحيا كمتر ازmv 100-در حد مطلوبيميباشد. [2]
    فرمول زير جهت اندازه گيري پتانسيلاكسيداسيوناحيامحيط بكارميرود
    پتـانسيل اكسيداسيوناحياء محيط نسبت به هيدرژن وEptپتانسيل الكترود پلاتين نسبت به كالومل (Hg-Hg2Cl2) ECalپتانسيلالكترود مرجع يا كالومل است كه معمولاً روي آن نوشته شده است.
    pH- مشخصه پتانسيليون هيدروژن محيط است.
    محيط نسبت بهSRBخورندهاست.
    محيط نسبت بهSRBخورنده نيست[4].
    در واحدهايعملياتي در نقاطي كه سرعت سيال كم و يا در حد ساكن است امكان وجود باكتربهاياحياء‌كننده سولفات بيشتر ميباشد. درجه حرارت مناسب براي رشد آنها (30-20) درجهسانتي‌گراد است. اين باكتريها در فشارهاي بالا و دماهاي پايين و بالا فعال هستند. اكثر آبهاي شور، شيرين، خاك و گل حفاري حاوي مقدار زيادي يون سولفات و مقدار كمي ازتركيبات آلي گوگرددار ميباشند كه به راحتي به وسيله اين نوع باكتريها احياءميشوند.
    در مناطق عملياتي كه احتمال وجود اينباكتريها بيشتر است:
    - در نقاطي از مسير لوله كهسيال حالت سكون دارد
    - در زير رسوبات انباشتهشده در مسير لوله ها، مخازن نفت خام، مخازن آب و محلهاي خروجي آب
    - در زير لجن و گل ولاي موجود در عمق حفرهها
    - در فيلترها مخصوصاً‌ انواع شني و سنگي
    - در قسمتهاي بيروني لولههاي دفن شده در زمين و در لانهموش
    - فصل مشترك آب و نفت، دستگاههاي مبدل حرارتيو تصفيه خانهها
    - شكل زير آثار خوردگي ميكروبيدر لوله تحت فشار بالا را نشان ميدهد

    [1]
    . Pitting

    [2]
    . Tubercule

    [3]
    . Cathodic depolarization

    [4]
    . Heterotrophic

    [5]
    . Autotrophic

    [6]
    . Anaerobic

    [7]
    . Aerobic

    [8]
    . Faculative

    [9]
    .Sessile

    [10]
    . Planktonic

    [11]
    . Redox- potential
    منابع خوردگي ميكروبي
    منابع:
    1- فونتاناوگرين مترجم دكتراحمدساعتچي (مهندسي خوردگي) انتشارات جهاد دانشگاهي اصفهان
    2- ناهيد آموزگار- باقر يخچالي گزارش پروژه خوردگيآلياژهاي مختلف ناشي از فعاليت باكتريهاي احياءكننده سولفات "پژوهشگاه صنعت نفت"
    3- The Role of Bacteria in the Corrosion of oil Field Equipment NACE Publication
    4- Corrosion Edited by L.L.Shreir
    5- نقشآب و كنترل خوردگي در صنايع- مهندسي سيد احمد پيشنمازي
    6- Microbiologically Induced Corrosion, Gregory Kobrin, Editor 1993
    7- گزارش پروژه بهينه‌سازي مصرف بايوسايد در پالايشگاه تهرانپژوهشگاه صنعت نفت (1376) ناهيد آموزگار- رحمانقلي سليماني
    8- بروشور تست ميكروبي شركتGrace-Dearborn
    9- Microbial Life in Cooling Water System by Amandak
    10- Handbook of Biocide and Preservative use edited by H.W.Rossmore.
    11- ناهيد آموزگار – رحمانقلي سليماني گزارش پروژه بهينه‌سازي مصرفبايوسايد در پالايشگاه تهران 1376 پژوهشگاه صنعت نفت
    12- Betz Handbook of industrial Water Conditioning
    13- Chemical treatment makes cooling water reuseable chemical engineering july 1995
    14- Practical Aspects of Bio fouling Control in Industrial waste water System.
    15- How to monitor Biofilm Development.
    16- Simple Method determines flow regime for friction factor calculations.
    17- Bergey's manual of systematic Bacteriology vol 3.
    18- Standard Method for the examination of water and waste water.
    19- TPC Publication Cooling water treatment Manual. (NACE)
    20- بهسازی شیمیایی آب برجهای خنک‌کننده، جیمز دابلیومک‌کوی، ترجمه محمدرضا نفری، مترجم: مهندس محمد رضا نفری
    21- آشنایی با برجهای خنک‌کننده و عملکرد آنها، انجمنخوردگی ایران
    خوردگي ميكروبي
    خوردگيميكروبي

    يكي ازمهمترينجنبههاي علم خوردگي فلزات كه مطالعه وتحقيق برروي آن كمتر صورت گرفته است، پديدهخوردگي ميكروبي است، اين نوع خوردگي در واقع به تخريب وازبين رفتن يك فلزمي انجامدكه به طور مستقيم و يا غيرمستقيم در نتيجه فعاليت موجودات زنده است. اين موجوداتزنده شامل انواع ميكروسكوپي مانند باكتريها، قارچها و انواع ماكروسكوپي مانندجلبكها و جانوران دريايي ميباشند. اين موجودات معمولا در محيطهايي باpHبين 11-1 و درجهحرارت 180-30- درجه فارنهايت و فشار حداكثرpsi15000 را تحمل و رشد وتكثير مينمايند. فعاليتهاي بيولوژيكي ممكناست بر خوردگي در محيطهاي مختلفي مثل خاك، آب، محصولات نفتي و مايعات روغن كاريتاثير بگذارد. اين موجودات قادرند مواد آلي ومواد معدني محيط اطراف خودرا تغذيهنموده و در اثر سوخت و ساز آنها مواد ديگري را به وجود آورند كه در نتيجه توليد اينمواد فرآيندهاي خوردگي را تحت تاثير قرار دهند.[2]
    خوردگي ميكروبي اولين بار توسط گارت در سال 1891 هنگامي كه ويبرروي خوردگي كابلهاي سربي مدفون شده در زير خاك مطالعه ميكرد،گزارش گرديد. وياظهار نمود كه خوردگي كابلهاي سربي ناشي از فعاليتهاي متابوليكي باكتريهاي موجوددر خاك است. سپس در سال 1934von Wolzojenkuhrوvander vlughگزارشي در مورد خوردگي فلزاتآهني مدفون شده در خاك تحت شرايط بي‌هوازي را ارايه دادند. مطالعات آنها نشان دادكه خوردگي توسط فعاليت يك نوع باكتري
    بي‌هوازي بنام باكترياحياكننده سولفات(SRB)رخ داده است. از آن زمانبه بعد مطالعه و تحقيق برروي اين پديده بيشتر شد و موضوع خوردگي ميكروبي به عنوانيك پديده در علم خوردگي فلزات مورد توجه قرار گرفت.
    خوردگي ميكروبي در اثر وجود و فعاليت باكتريهاي احيا كننده سولفات[1](SRB) ، باكتريهاي تشكيل دهنده لجن[2] ،باكتريهاياكسيد كننده آهن[3]،باكتريهاياكسيد كننده ازت[4]،باكتريهاياكسيد كننده گوگرد[5]وپاره‌اي از ميكروارگانيزم‌هاي ديگر نظيرجلبكها[6]قارچها[7]وكشتيچسبها[8]پديد ميآيد.
    انواع ميكروارگانيزمهاي مولّد خوردگي

    مقدمه: بسياري از مردمتصور ميكنند نقش ميكروارگانيزم‌ها فقط در مضراتي است كه از بيماري انسان،‌حيوان وگياه ناشي مي‌شود. اما نقش مفيد ميكروبها نسبت به ضررشان به مراتب بيشتر است، ازهزاران نوع ميكروب موجود درصنعت تعداد اندكي براي انسان، حيوان و گياه بيماري زاميباشند و ساير ميكروبها در تجزيه، تغيير، تبديل و توليد مواد مفيد بوده و قابلاستفاده ميباشند. بهبود محصولات كشاورزي،‌ توليد مواد غذايي و صنعتي، تجزيه موادسمي و آلوده كننده محيط زيست و... در اثر فعاليت باكتريهاست از نظر متابوليسم انرژيموجودات زنده به دو دسته تقسيم ميشوند.
    1- موجودات هوازي كه در آنها انرژي مورد نياز در اثراكسيد اسيون مواد آلي بدست ميآيد و پذيرنده نهايي الكترون حاصل از تجزيه مواد آلياكسيژن است.
    2- موجودات بي هوازي كه براي ادامه حيات به اكسيژن نياز ندارند و حتيتعدادي از آنها
    نمي توانند اكسيژن را تحمل كنند، موجودات بي هوازي منحصراً ازميكروارگانيزمها هستند و در طبيعت محيطهاي فاقد اكسيژن و يا داراي اكسيژن بسيار كمرا انتخاب ميكنند.(2)


    باكتريهاي احياكننده سولفات(SRB)
    قسمت اعظم خوردگي ميكروبيدر صنعت مربوط به باكتريهاي احيا كننده سولفات است كه مكانيزم عمل آنها احياء‌سولفات معدني2- (SO4)و تبديل آن به سولفيد است. اين باكتريها در محيطهاي بي‌هوازيتركيبات گوگردي را احياء و تبديل به نموده و هيدرژن سولفوره از راه تركيب با آهن وساير فلزات به صورت سولفيد در ميآيد.
    اينميكروارگانيزمها از دو ميليارد سال پيش در طبيعت وجود داشته و در شرايط متنوع ومتغيير كره زمين زندگي ميكنند، كار اصلي آنها در طبيعت احياء بيولوژيكي سولفات استكه همانند تثبيت بيولوژيكي ازت و توليد بيولوژيكي اكسيژن از پديدههاي الزامي برايآغاز حيات بشر و ادامه آن است.
    اين ميكروب جزءباكتريهاي بي هوازي است كه داراي سيستم تنفسي نبوده و قادر به استفاده از اكسيژن بهعنوان پذيرنده نهايي الكترون نمي باشد.
    احياءكنندههاي سولفات، گروهي از باكتريهاي بي هوازي اجباري هستند كه انرژي لازم برايرشد خود را از اكسيداسيون مواد آلي همراه با احياء سولفات به دست ميآورند و به جاياكسيژن مواد گوگردي نظير سولفات، گوگرد و ساير تركيبات گوگردي اكسيد شده را بهعنوان پذيرنده نهايي الكترون مصرف و آنها را به احياء ميكنند.
    اين باكتريها به اشكال خميده، ‌بيضي، كروي، و رشته اي با طول (5-1) و عرض (2-5/0) ميكرون بوده و اغلب داراي تاژه و متحرك هستند، اكسيژن براي اينباكتريها مضر است، گرچه آنها را از بين نمي‌برد اما غير فعال ميكند. فرق بين انواعآنها (دي سولفوويبريو، كلستريديوم و توماكولم) مربوط به چگونگي مواد آلي است كه اينباكتريها ميتوانند احياء كنند. شكل 1 انواع باكتريهاي دي‌سولفوويبريو را نشانمي‌دهد.
    فرآيند عمل آنها احياء‌سولفات معدني وتبديل آن به سولفيد است.
    اين باكتريهاpHخنثي را براي رشدترجيح ميدهند اما فعاليت آنها درpH (5/9-5) گزارش شده است.حرارت مناسب رشد آنها (40-20) درجهسانتي‌گراد، اما گونه حرارت دوست آنها دي سولفوتوماكولم نيگريفيكانس در درجه حرارت (70-65) درجه سانتي گراد جدا شده اند. بطور كلي زيست اين باكتريها در حرارتهاي (104-5-) درجه سانتي گراد گزارش شده است.
    رسوباتو گل و لاي آبهاي شيرين، لب شور و دريايي، خاك، فاضلاب، آبهاي زيرزميني، كودحيواني، چشمههاي گوگردي، چاههاي نفت و گاز، اطراف چشمههاي آب گرم، اعماق دريا،لوله گوارش انسان و حيوان محل رشد اين باكتريهاست.
    آبهاي درياي خزر و خليج فارس نيز حاوي اين باكتريها ميباشد. آبهاي دريا حاوي(10-1) باكتري و رسوبات كف دريا حاوي(105-102) باكتري در ميلي ليتر ميباشد.
    جمعیت باكتري بستگي به مقدار اكسيژن و مقدار مواد آلي و معدنيدارد. رشد آنها در چاههاي نفت با فشار بالا مشاهده شده است.[3]

    [1]
    Sulfate Reducing Bacteria

    [2]
    Slime Forming Bacteria

    [3]
    Iron Oxidizing Bacteria

    [4]
    . Nitrifying Bacteria

    [5]
    Sulfur oxidizing Bacteria

    [6]
    . Algae

    [7]
    . Fungi

    [8]
    . Barnacle
    پلاريزاسيون

    بررسي واكنش‌هايشيميائي نشان مي‌دهد كه اين واكنش‌ها تمايل دارند به سرعت تعادلي كمتر از سرعتاوليه واكنش برسند. به همين صورت در فعاليت‌هاي خوردگي نيز به دليل اثرات ناشي ازمحصولات واكنش‌هاي آنديك و كاتديك، روند كند شدن واكنش‌ها ديده مي‌شود. واكنشكاتديك و همراه با آن واكنش كلي خوردگي آهسته‌تر مي‌شود. اگر محصول هيدروژن توليدشده از آن با ايجاد گاز ئيدروژن با ديگر واكنش‌ها با اكسيژن مصرف نشود، در اين حالتگفته مي‌شود اين كاهش سرعت در واكنش از پلاريزاسيون كاتديك نتيجه شده است.بررسي ايناثر با اندازه‌گيري پتانسيل فلز در آن جائي كه واكنش اتفاق مي‌افتد امكان‌پذيرمي‌باشد. براي مثال اگر پتانسل سطح كاتدي فلز قبل و بعد از برقراري با سطح آندي آناندازه‌گيري شود، مشخص مي‌شود كه پتانسيل اندازه‌گيري شده تغييراتي داشته و بهمقداري نزديك‌تر به پتانسيل آندي رسيده است.به همين صورت اندازه‌گيري پتانسيل قسمتآندي قبل و بعد از برقراري جريان نشان‌دهنده‌ي نزديك‌تر شدن پتانسيل اين قسمت بهپتانسيل قسمت كاتدي مي‌باشد كه مي‌تواند نتيجه افزايش غلظت يون‌هاي فلزي در ناحيهآندي و در مجاورت سطح فلز در حال خورده شدن باشد.دو نوع مختلف پلاريزاسيون ياراه‌هائي كه واكنش‌هاي الكتروشيمي كندتر مي‌شوند وجود دارد. اين دو پلاريزاسيونناشي از فعاليت و غلظت عوامل مؤثر به واكنش‌ها مي‌باشند.واژه پلاريزاسيون ناشي ازفعاليت در نشان دادن فاكتورهاي كند كننده‌ائي كه خودشان از عوامل اصلي واكنش هستندبه كار مي‌رود. براي مثال در واكنش احيا يون ئيدروژن كه قبلاً توضيح داده شد، سرعتيكه يون‌هاي ئيدروژن را به گاز ئيدروژن احيا مي‌كند، به عواملي بستگي دارد كه درسرعت انتقال الكترون به سطح فلز مؤثر هستند. اين عوامل شامل نوع فلز، غلظت يونهيدروژن و دماي سيستم مي‌باشد. در حقيقت اختلاف زيادي در قابليت‌هاي فلزات مختلف درانتقال الكترون به يون هيدروژن وجود دارد در نتيجه سرعت تشكيل هيدروژن از سطوحفلزات مختلف كاملاً متفاوت مي‌باشد.در مقابل پلاريزاسيون ناشي از غلظت در موردعوامل كندكننده واكنش به دليل تغييرات غلظت محلول مجاور سطح فلز، به كار بردهمي‌شود.
    شکل 9-1 تشکیل هیدروژن بروی سطح فلز در حال خوردگی
    درشكل9-1 تشكيلهيدروژن بر روي سطح فلزي كه به سرعت خورده مي‌شود، نشان داده شده است. براي سادگيواكنش‌هاي اكسيداسيون فلز نشان داده نشده است.اگر اين واكنش با سرعت نسبتاً خوبيپيشرفت كند و غلظت يون‌هاي هيدروژن در محلول نسبتاً پائين باشد، مي‌توان ديد كهناحيه خيلي نزديك به سطح فلز از يون‌هاي ئيدروژن خالي خواهد شد و اين موضوع به دليلآن است كه اين يون‌ها به وسيله واكنش كاتديك مصرف مي‌شوند. تحت اين شرايط واكنشتوسط ميزان نفوذ يون‌هاي ئيدروژن به سطح فلز كنترل مي‌شود.پلاريزاسيون ميزانفعاليت، معمولاً فاكتور كنترل‌كننده خوردگي در اسيدهاي قوي است و پلاريزاسيون ناشياز غلظت معمولاً وقتي غلظت عوامل فعال كم باشد، تسلط مي‌يابد براي نمونه در اسيدهايضعيف و در آب‌هاي هوادهي شده و محلول‌هاي آبي اثرات اين نوع پلاريزاسيون را مي‌توانديد. شناخت انواع پلاريزاسيوني كه رخ مي‌دهد بسيار مفيد مي‌باشد بطوري كه مي‌تواندبه پيش‌بيني مشخصات سيستم‌هاي خورنده كمك زيادي نمايد.به عنوان مثال، اگر خوردگي بهوسيله پلاريزاسيون ناشي از غلظت كنترل گردد، در اين حالت هر تغييري كه موجب افزايشسرعت نفوذ عوامل فعال (مانند ) شود، مي‌تواند باعث سرعتخوردگي گردد. در چنين سيستمي، اين انتظار هم وجود دارد كه آشفته نمودن محلول يا بههم زدن و تكان دادن آن، تمايل به افزايش خوردگي فلز را بيشتر مي‌نمايد.در حالي كهاگر فعاليت واكنش كاتدي كنترل مي‌شود، به هم زدن يا تكان دادن هيچ اثري بر روي سرعتخوردگي نخواهد داشت. شناخت نوع پلاريزاسيون كه واكنش خوردگي را كنترل مي‌كند، به مااجازه مي‌دهد كه پيش‌بيني‌هاي خيلي مفيد در رابطه با اثرات نسبي بر روي سرعت خوردگيداشته باشيم. بطور كلي مي‌توان گفت: نوع پلاريزاسيوني كه در آند و كاتد رخ مي‌دهدميزان خوردگي ايجاد شده را در بيشتر پيل‌هاي الكتروشيميائي تعيين مي‌كند.همان‌طوركه قبلاً گفته شد، تأثير مقدار جريان خوردگي بر روي پديده پلاريزاسيون نه تنها بهمقدار كلي مقدار جريان بلكه همچنين به دانسيته جريان يا مقدار جريان در واحد سطح همبستگي دارد. در واقع به راحتي مي‌توان فهميد كه اگر مقدار معيني جريان به صورتمتمركز بر روي يك ناحيه كوچك از سطح فلز بسيار بيشتر از زماني است كه همان مقدارجريان بر روري سطح خيلي بزرگ‌تر پراكنده شده باشد.اگر اندازه سطح و مقدار دانسيتهجريان در مورد دو فلز فولاد و مس وقتي كه به صورت ورقه يا ميخ پرچ در يك محلولخورنده قرار مي‌گيرند مورد بررسي قرار گرفته است. در حالتي كه ميخ پرچ استيلي براياتصال ورقه مسي استفاده مي‌شود، دانسيته جريان بر روي ورقه‌هاي مسي داراي سطحكاتديك نسبتاً بزرگ كم خواهد شد، پلاريزاسيون كاتديك بر روي مس مقدار ناچيزي مي‌شودو ولتاژ دو فلز نا همجنس (جفت گالوانيكي) داراي مقداري نزديك به پتانسيل مقدار بازآن‌ها خواهد شد. در همين زمان، دانسيته جريان بر روي پرچ استيلي داراي سطح آنديككوچك خيلي زياد مي‌شود و نتيجتاً موجب خوردگي خيلي شديد در اين قسمت مي‌شود.برعكسهنگامي كه از پرچ مسي در اتصال دادن ورقه‌هاي استيلي استفاده مي‌شود، دانسيته جريانبر روي پرچ‌هاي مسي كاتد شده زياد مي‌شود در نتيجه به دليل پلاريزاسيون قابل ملاحظهپرچ‌هاي مسي پتانسيل مدار باز جفت گالوانيكي كمتر از مقدار اوليه خواهد شد. در اينحالت جريان آند يك كاهش يافته بر روي ورقه‌هاي استيلي بزرگ پخش مي‌شود و از اثرنامطلوب ناشي از اتصال دو فلز غير هم جنس به شدت كاسته مي‌شود.اندازه‌گيري پتانسيلمدار باز براي پيش‌بيني اندازه و مقدار اثرات ناشي از دو جفت گالوانيكي نامناسبمي‌باشد. به دليل آنكه با اين اندازه‌گيري نمي‌توان اندازه سطح و ميزان اثراتپلاريزاسيون را محاسبه نمود. بلكه اين اندازه‌گيري تنها براي پيش‌بيني جهت چنيناثراتي قابل اطمينان و استفاده مي‌باشد.
    اهميتاكسيژن

    اكسيژن شناخت شده‌ترين كاهش دهندهپلاريزاسيون (دي پلاريزر) واكنش‌هاي كاتديك مي‌باشد. نقش اكسيژن را در افزايشخوردگي به آساني با قرار دادن دو قطعه آهن در ٢ ظرف پر شده با آب مي‌توان نشان داد. در داخل ظرف اول لوله‌هائي براي ورود اكسيژن قرار داده شده و در ظرف دوم براي حذفاكسيژن محلول آب با گاز نيتروژن اشباع مي‌شود. پس از آنكه بعد از چند ساعت در دوظرف گازهاي اكسيژن و نيتروژن وارد گرديد خواهيم ديد كه آهن قرار گرفته در آب بدوناكسيژن براق و روشن باقي مي‌مان. اما آهن قرار داده شده در آب اشباع از اكسيژن شروعبه زنگ زدن مي‌كند.اكسيژن موجود در هر محلول يكي از مهمترين فاكتورهاي مؤثر درخوردگي آهن و مقدار زيادي از ديگر فلزات قرار مي‌گيرد. حذف اكسيژن به وسيله عملياتهوازدائي يك وسيله مؤثر جلوگيري مي‌باشد. به عنوان مثال در مورد ديگ‌هاي بخارعمليات هوازدائي و آب ورودي به صورت كامل انجام مي‌شود.
    پيل‌هاي غلظت اكسيژن

    نقش اكسيژن درواكنش‌هاي خوردگي، اين حقيقت را نشان داده است كه اكسيژن نه تنها مي‌تواند به انجامشدن و تداوم يك واكنش كاتدي كمك نمايد بلكه مي‌توان موجب گسترش و پيشرفت اين واكنشنيز گردد.
    اين واكنش در جايي كه اختلاف در غلظت اكسيژنمحلول بر روي قسمتي از سطح فلز نسبت به ساير قسمت‌ها وجود دارد رخ مي‌دهد. از آنجاكه اين واكنش نيز تمايل دارد كه به سمت تعادل پيش برود. تنها راه رسيدن به تعادل بهوسيله خوردگي و با كاهش غلظت اكسيژن در جايي كه بيشترين غلظت را دارد امكان‌پذيرمي‌باشد. چنين واكنشي مي‌تواند با مصرف اكسيژن انجام شود، در نتيجه جايي كه اختلافغلظت اكسيژن محلول در دو نقطه روي سطح فلز وجود دارد قسمت‌هائي در تماس با غلظتاكسيژن بيشتر نسبت به قسمت‌هاي در تماس با غلظت اكسيژن كمتر كاتديك مي‌شوند. در اينحالت قسمت‌هاي در معرض غلظت اكسيژن كمتر به صورت آندهايي در يك پيل ناشي از اختلافغلظت اكسيژن به خوردگي شديدي دچار مي‌شوند.يك پيل ناشي از اختلاف غلظت اكسيژنمي‌توان به سادگي در يك شرايط آزمايشگاهي در دو ظرف مرتبط همانند دستگاهي كه براياثبات پيل ناشي از اختلاف يون فلز به كار مي‌رود نشان داد.در اين آزمايش قطعات آهندر محلول كلريد سديم در هر دو ظرف قرار داده مي‌شوند. محلول در يك ظرف با اكسيژن ودر ظرف ديگر به وسيله نيتروژن اشباع مي‌شود. اين حالت موجب به وجود آمدن اختلافزيادي در غلظت اكسيژن محلول در تماس با دو قطعه آن مي‌گردد.غلظت زياد اكسيژن درمحلول ظرف اول سطح آهن را شديداً نسبت به ظرف دوم كاتديك مي‌سازد. پتانسييلاندازه‌گيري شده ميزان اختلاف در غلظت اكسيژن و اندازه جريان را با توجه به مساحتسطوح فلز مورد نظر و مقاومت مدار تعيين مي‌كند.اختلاف و غلظت اكسيژن مي‌توند بهوسيله گراديان سرعت و همچنين وجود شكاف‌ها و درزها ايجاد گردد. محل آندها و كاتدهادر اين پيل درست برخلاف پيل غلظت يون‌هاي فلزي مي‌باشد، در اين حالت اين سطوحكاتديك شده و سطوح با قابليت دسترسي كمتر به اكسيژن كه در سرعت كمتري در حال حركتهستند نقش آديك خواهند داشت. به عنوان مثال معمولاً در سطوح نزديك مركز ديسك نوارخوردگي شديدي ديده مي‌شود.
    شدت خوردگي به وسيله يك پيلناشي از اختلاف غلظت اكسيژن در داخل درزهاي يا زير رسوبات بيشتر از خارج آنمي‌باشد. مشابه حالت قبلي در اين مورد نيز حل آندها و كاتدها برخلاف پيل حاصل ازاختلاف و غلظت يون‌هاي فلزي مي‌باشد. اين اختلاف بين دو نوع پيل غلظتي پيش‌بيني شدتو محل خوردگي ناشي از فعاليت آن‌ها را پيچيده مي‌نمايد.به صورت يك قانون كلي، آنفلزاتي كه در بالاي سري الكتروموتيو قرار گرفته‌اند به عنوان مثال آهن با احتمالزيادتري براي حملات شديد ناشي از پيل‌هاي اختلاف غلظت اكسيژن مساعد مي‌باشند. درحالي كه آن دسته از فلزاتي كه در سمت پائين سري فوق قرار مي‌گيرند به عنوان مثالمس، در مقابل فعاليت پيل اختلاف يون فلز آسيب‌پذيرتر مي‌باشند.فلزات و آلياژهايقرار گرفته در محدوده وسط به عنوان مثال، آلياژ مس ـ نيكل از اثرات مخالف دو نوعپيل بهره مي‌برند.آلياژهاي ساخته شده از تركيب فلزات نزديك به قسمت بالاي سريالكتروموتيو به عنوان مثال آهن و كرومينيوم (فولاد ضد رنگ) كه پتانسيلي خنثي‌تر ازفلزات تشكيل‌دهنده دارند به دليل اثر فيلم خنثي ناشي از واكنش با اكسيژن به طورويژه‌اي در مقابل قابليت دسترسي به اكسيژن حساس هستند و بنابراين در مقابل فعاليتپيل اختلاف غلظت اكسيژن آسيب‌پذير مي‌باشند.
    خوردگي در صنايع نفت و گاز
    خوردگي درتأسيسات نفت و گاز

    تا اینجا خوردگي را بطور كلي بيان نموديم و با اصول و انواع و روش‌هايجلوگيري از آن آشنايي پيدا كرديم. خوردگي در كليه محيط‌ها بسته به شرايط وجود داردو كليه صنايع با اين مشكل روبرو مي‌باشند. يكي از صنايع كه داراي محيط‌هاي خورندهفراوان مي‌باشد صنعت نفت است، که دارای ویژگی های خاصی می باشد که مهمترین آن هاشرح داده می شود :
    ويژگي‌هاي محيط‌هاي خورنده درصنعت نفت و گاز

    ١- خوردگيتوسط گاز خورنده دي‌اكسيد كربن

    خوردگي شيرين در حضورو آب در جايي كهوجود نداشته باشد اتفاق مي‌افتد. اين نوع خوردگيمي‌تواند در خطوط لوله نفت يا گاز رخ بدهد و معمولاً حفره‌هاي عميقي ايجادمي‌نمايد. بدون آبخورندهنمي‌باشد. اين گاز در آب حل شده و اسيد كربنيك ايجاد مي‌نمايد كه موجب كاهشph آب كه كاملاً بر فولاد اثر خورندگي دارد، مي‌گردد. مقدار پ ـ هاشبه دست آمده از محلولدر آبمقايسه با مقادير پ ـ هاش حاصل از محلول‌هاي اسيدي بسيار خورنده‌تر مي‌باشد، اينامر به آن علت است كه در مورد اسيدهاي قوي مقدارph فقط غلظت يونهيدروژن واقعي كه با مقدار كل اسيد مطابقت مي‌كند نشان مي‌دهد، اما در اسيد كربنيكضعيف، فقط بخشي از يك مقدار به مراتب بزرگ‌تر تجزيه مي‌شود. واكنش اساسي محتمل دراين رابطه به صورت زير مي‌باشد:




    همان‌طور كه گفته شد اسيد كربنيك تشكيل شده بهمقدار ناچيز در آب تجزيه‌پذير است و وقتي بر آهن اثر مي‌گذارد، محصول، خوردگي تشكيلمي‌دهد. بي‌كربنات (در آب محلول) و كربنات (در آب بسيار كم محلول)، در مواردي بههمان اندازه كه فشار دي‌اكسيد كربن در جريان گاز بالا مي‌رود، مقدار خوردگي افزايشمي‌يابد. اين موضوع به دليل كاهش ph محيط، تسهيل فرآيند كاتدي از الكتروشيمي خوردگي اسيدكربنيك،پيشرفت دي پلاريزاسيون ئيدروژن و نهايتاٌ افزايش حلاليت فيلم محافظ و به همان نسبتكاهش رسوب فيلم كربنات از آب مي‌باشد. خوردگي معمولي سطح به وسيلهمعمولاً به صورت حملاتموضعي شديد (piii ing) و با حملات بر قسمتياز سطح (partial surface attack) رخ مي‌دهد. حملاتخوردگي اغلب به شكلي است كه به آنmcsa typc گفته مي‌شود. در اينحالت قسمتي از سطح،که به دليل اثرات سائيدگي ماسه و يا تلاطم جريان محافظت نشدهباشد، دائماً در معرض محيط خورنده قرار مي‌گيرد. نواحي خورده شده در بعضي از مواقعظاهر متاليك (metalic apperarnce)دارد در حالي كه سطح باقيمانده مي‌تواند توسط يك لايه محافظ ازكربنات آهن پوشيده شده باشد در حقيقت اين حالت، اغلب در جايي كه توربولني زياديوجود داشته باشد آشكار مي‌گردد.در سيستم‌هاي گازي شدت خوردگي ناشي ازبه چند فاكتور بستگي دارد،مهمترين آن‌ها درصد، فشار،دما، سرعت گاز و تركيبات آب مي‌باشد، با افزايش دما تا ٥٥٣ درجه كلوبن فعالت خوردگيدر سيستم شيرين افزايش مي‌يابد. در دماي بيشتر از آن به دليل كاهش حلاليتدر فاز آب خوردگي نيز كاهشمي‌يابد. با افزايش فشار، بيشترين مقدار خوردگي در دماي بالاتر به دست مي‌آيد. درسيستم‌هاي نفتي به نظر مي‌رسد، نسبت آب به نفت يك عامل مؤثر اوليه و از جمله شرايطمساعد براي بروز اين نوع خوردگي مي‌باشد. نسبت نفت ـ آب را كه خوردگي ممكن است درآن شروع شود دقيقاً نمي‌توان تعريف نمود ولي تجربيات عملياتي نشان داده است كه وقتيآب بيش از ٥٠ درصد يا بيشتر باشد ممكن است خوردگي يك مشكل اساسي بشود بطوري كه دراين حالت نفت توليدي نمي‌تواند يك فيلم محافظ روي سطح فلز ايجاد نمايد. از طرف ديگرمواردي وجود داشته كه به رغم مشاهده آب آزاد ناچيز در جداكننده‌ها و وجود امولسيونفشرده با تقريباً يك درصد آب، مقدار خوردگي اندازه‌گيري شده در آسيب‌هاي پيش آمدهبيش از ٤٠٠ هزارم اينچ در سال بوده است.
    ٢- خوردگي توسط مايعات خورنده مخازننفتي

    خوردگيمي‌تواند همچنين بدون فشار جزئي قابل توجهبه وسيله توليد مايعات خورنده مخزن رخ بدهد. آبمخزن مي‌تواند با انحلال مقادير زياديدر دماي مخزن بهph٢يا كمتر برسد همچنين اسيدهايارگانيك از مواد خارجي مخازن وتوليد شده توسط ميكروارگانيزم‌هاي موجود در آب مخزن مي‌تواند موجب حملهبه سطح فولاد گردند.
    ٣- خوردگي توسط گاز خورنده سولفيد هيدروژن

    اين نوعخوردگي فقط در حضور آب و سولفيد هيدروژن رخ مي‌دهد و بدون حضور آب شروع نخواهد شد. بيشتر در تجهيزات چاه‌ها، خطوط لوله جمع‌آوري و تجهيزات فرآيندي كارخانجات با آنمواجه مي‌شويم و در خطوط اصلي انتقال گاز و تجهيزات مربوط به آن كه حضور بخار آب وسولفيد هيدروژن شديداً كنترل مي‌شود اين نوع خوردگي ديده نمي‌شود. ضايعات ناشي ازاين نوع خوردگي غالباً به صورت خوردگي عمومي، خوردگي حفره‌اي، hsc, scc ديده مي‌شود كه در زير دو نوعاز اين ضايعات كه مي‌تواند با ضايعات اخير خوردگي خطوط لوله جرياني چاه‌ها موردمقايسه قرار گيرد تشريح شده است.

    ø خوردگيعمومي

    به صورتخلاصه مكانيزم اين نوع خوردگي را در واكنش زير مي‌توان نشان داد، اگر چه به طوركامل توسط اين واكنش توضيح داده نمي‌شود.

    اين نوع خوردگي بطور يكسان در سراسر سطح فلز درمعرض محيط خورنده رخ مي‌دهد. در مواقعي كه توليد آب كم باشد خوردگي عمومي كاملاًملايم بوده و به آساني توسط مواد كند كننده خوردگي كنترل مي‌شود. گفته مي‌شود كهسولفيد آهن كه به صورت يك پودر سياه يا رسوب تشكيل مي‌شود از حملات بيشتر فلز رامحافظت مي‌نمايد. به شرط اينكه فيلم سولفيد تشكيل شده تداوم داشتهباشد.
    ø خوردگي از نوع حفره‌ايي

    در صورتي كه فيلم سولفيد آهن تشكيل شده بر رويسطح فلز ناشي از واكنش بالا، ترك بخورد يا قسمتي از آن برداشته شود، قسمت بدونحفاظت فلز به صورت ناحيه آنديك نسبت به ساير قسمت‌هاي داراي پوشش خواهد شد. اينشرايط آنديك سطح فلز لخت را براي خوردگي شديدي از نوع حفره‌اي مساعد مي‌نمايد. بهاين نوع خوردگي موضعي كه ناشي از (barnaci,e-type)گفته مي‌شود كه برخلاف نوع خوردگي حفره‌اي ناشي از(mesa-type) و ساير اشكال خوردگي‌هاي موضعيمي‌باشد.

    بطورکلی خوردگي در صنعت نفت را مي‌توان به سه بخش كلي تقسيمنمود:
    توليد
    حمل و نقل و نگهداري
    عمليات پالايش
    توليد

    ميادين نفتي و گازي مقادير عظيمي لوله، جدارهفلزي داخلي چاه casings پمپ، شيرها، ميله‌هاي مكنده فولادي و چدني الكتروموتورها و ادواتديگر مصرف مي‌نمايند. وجود نشت باعث از بين رفتن نفت و گاز و آلودگی محيط‌زيستمي‌شود.يكي از مهمترينبخش توليد در صنعت نفت انواع چاه‌هاي نفتي، گازي و تزريقيمي‌باشند كه به دليل موارد ذيل مستعد خوردگي مي‌باشند.
    عمق بيشتر از ٥٠٠٠ فوت
    درجه حرارت مدخل پائيني بالايدرجهفارنهايت
    فشار بالا حدودپوند بر اينچمربع
    فشار جزئي دي‌اكسيدكربن بالاي ١٥ پوند بر اينچ مربع
    ph اسيدي قسمت بالاي چاه (كمتر از٤/٥)
    وجود درصد زياديهيدروژن سولفوره، آب ومنواكسيد كربنco مخصوصاً در چاه‌هاي نفتي و گازيترش sour oll wells
    وجود ذرات جامد معلق مانندشن و ماسه sandدر نفت و يا گازهچاه‌ها
    مشخص نمودننوع و ميزان خوردگي در چاه‌ها (wells)

    بازرسي و كيفيت خوردگي تجهيزات زميني
    آناليز دي‌اكسيد كربن، اسيدهاي آلي وآهن
    نمونه‌هاي آزمايشيقرار داده شده در محيط
    نازك شدن و تغيير قطر لوله‌ها و تعيين آهن خورده شده كه اين مورددر مشخص نمودن درجه مؤثر بودن ممانعت كننده‌هانيز كاربرددارد.
    جلوگيري ازخوردگي چاه‌ها

    استفاده از ادواتي كه به راحتي قابل تعويض باشند مانند tubingدر درونلوله‌هاي جداري
    تزريقممانعت‌كننده‌هاي آلي
    استفاده از فولادهاي آلياژ به جاي فولادهاي منگنزدار با كربنمتوسط
    پوشش دادن لوله‌هابه وسيله فنوليك‌هاي پخته شده و رزين‌هاي اپوكسي
    يكي ديگر از مهم‌ترين محيط‌هاي خورنده در بخشتوليد صنعت نفت سكوهاي حفاري در دريا off shore drilling مي‌باشند.حفاري در دريا، مسائل خوردگي قابل توجهي به بار مي‌آورد .سكوهايحفاري به وسيله ستون‌هاي فلزي كه در كف اقيانوس فرو برده شده‌اند نگهداري مي‌شوند. هر ستون به وسيله يك جداره لوله براي حفاظت در برگرفته مي‌شود. آب دريا حدوددرصد نمك دارد وph=8 يعني محيط اندكي قليائي،بنابراين الكتروليت خوبي بوده و باعث خوردگي گالوانيكي و شياريمي‌گردد.
    روش‌هايجلوگيري از خوردگي سكوهاي حفاري دريا

    افزودن ممانعت‌كننده‌ها به آب دريا ساكن بينستون‌ها و جداره لوله‌ها
    حفاظت كاتدي، با آندهاي قرباني شوده يا با جريان خارجي اسكلت‌هايفلزي زير آب.
    رنگ‌ها وپوشش‌هاي ديگر براي حفاظت آن قسمت از اسلكت فلزي كه در منطقه متلاطم splashzone آب قرار دارد.
    كاربرد روكش مونل در منطقه سطح آب براي جداره خارجي چاه (اين قسمتمستعدترين محل براي خوردگي است).
    مونل:monel از آلياژهاي نيكل مي‌باشد.
    منطقه متلاطم splash zone

    بيشترين خوردگي در سطح آب، يا منطقه متلاطم اتفاق مي‌افتد. زيرادر اين منطقه، تر و خشك كردن مكرر صورت مي‌گيرد و همچنين تماس با هوا وجود دارد. درمناطقي كه آب محبوس شده و ساكن مي‌ماند سرعت خوردگي و حفره‌دار شدن فلزات و آلياژهابيشتر مي‌باشد.
    حمل ونقل و نگهداري

    مواد نفتي به وسيله تانكرها، خطوط لوله، تانكرهاي قطار و كشتي حمل و نقلمي‌شوند. قسمت‌هاي بيروني تانك‌ها يا لوله‌هاي زيرزميني به وسيله پوشش مناسب وحفاظت كاتدي محافظت مي‌گردند. حفاظت كاتدي همچنين براي قسمت‌هاي داخلي تانك‌هااستفاده مي‌گردد. تانكرهاي حمل بنزين نسبت به تانكرهاي نفتي مسائل خوردگي بيشتريدارند ، زيرا بنزين سطح فلز را خيلي تميز نگه مي‌دارد. نفت يك پوسته نازك روي سطحفلز باقي مي‌گذارد كه تا حدودي آن را محافظت مي‌كند. قسمت‌هاي بيروني تانكرها وكشتي حمل و نقل براي جلوگيري از خوردگي اتمسفري پوشش دادهمي‌شوند.
    خوردگيتانكر‌هاي نگهداري و ذخيره، در اثر آبي است كه ته‌نشين مي‌گردد. لذا براي محافظتتانك از پوشش و حفاظت كاتدي استفاده مي‌شود.كرومات سديم قليائي (يا نيترات سديم) ممانعت كننده مؤثري براي مخازن نفتي خانگي است. خوردگي داخلي خطوط لوله را با پوششو ممانعت‌كننده‌ها كنترل مي‌كنند.
    عمليات پالايش (تصفيه)

    اكثرمسائل خوردگي در پالايشگاه‌ها در اثر مواد معدني مثل آب،، اسيد سولفوريك و كلرور سديم به وجود مي‌آيد. مواد خورنده در عملياتتصفيه را مي‌توان به دو گروه كلي تقسيم نمود:

    ø آن‌هائي كه درنفت‌خام وجود دارند.
    ø آن‌هائي كه به همراه فرآيند يا كنترل وجوددارند.
    كنترل نشت در خطوط انتقال و شبكه‏هاى گازرسانى
    كنترل نشت در خطوط انتقال و شبكه‏هاىگازرسانى
    منبع :http://faridbensaeed.blogspot.com
    فلسفه و اهميت كنترل نشت
    الف - فلسفه كنترل نشت
    عليرغم اعمال كليه حفاظت‏ها و پيشبينى‏هاى فنى در طراحى و اجرا و بهره‏بردارى شبكه‏ها و خطوط انتقال گاز هيچگاهنميتوان احتمال بروز نشت را صفر فرض كرد .
    نشت گاز ممكن است در اثر خوردگى لوله‏ها،برخودر عوامل مكانيكى، نقص در ساختار لوله يا اتصالات، ايراد در اتصالات و شيرهاىسيستم بروز كند .
    ب - اهميت و لزوم كنترل نشت
    نشت گاز در شبكه‏هاى شهرى سبب پراكنده شدنگاز در زيرزمين و نهايتا" نفوذ بداخل منازل و ساير ابنيه مجاور خطوط لوله گرديده وميتواند منجر به بروز انفجار و آتش سوزى گردد.
    - در خطوط انتقال فشار قوى ثابت گرديده است كههر انفجار بزرگى كه در اثر خورده شدن لوله روى ميدهد و سبب خسارات فروان و با حداقلبه هدر رفتن حجم زيادى از گاز و قطع جريان گاز تا ترميم بخش صدمه ديده ميشود در بدوامراز يك نشت جزئى آغاز ميشود كه چنانچه در اين مرحله شناسايى و مهار ميگرديد ،ازتركيدگى لوله و ايجاد انفجار و آتش‏سوزى جلوگيرى ميشد.
    - هر متر مكعب گاز كه در اثر نشت گاز بهدرميرود ،سرمايه‏ايست كه از دست ميرود. چنانچه نشت‏هاى موجود در شبكه با خطوط انتقالمهار نگردد روزانه ميتواند مقادير زيادى گاز را از دسترس خارج كند و ازاينطريقسالانه ضررهاى اقتصادى هنگفتى را متوجه شركت ملى گاز نمايد.
    خلاصه: بنيان كار كنترل نشت بر دو اصلاستوار است :
    اصل اول : هيچگاه نميتوانيم مطمئن شويم كهنشت گاز نخواهيم داشت .
    اصل دوم : هم بلحاظ پيشگيرى از خطرات وهم‏از جنبه‏هاى اقتصادى موظفيم نشتها را شناسايى و مهار كنيم.
    2- سابقه نشت يابى در دنيا شركت ملى گازايران
    الف - نشت يابى در دنيا
    بيش از سه هزار سال است كه بشر با انرژىگازهاى سوختنى و از جمله گاز طبيعى و گاز حاصل از قطران زغال سنگ آشنا شده است ولىتنها در حدود يكصدسال از زمانى كه شركتهاى گازى دنيا متوجه اهميت مسئله نشت گاز ولزوم يافتن روشها و وسائلى براى كنترل نشت شده‏اند، ميگذرد .
    گاز قطران داراى بوى نافذ و مشخصى است كهيافتن محل نشت آنرا آسان ميسازد ولى گاز طبيعى (بجز گازهاى حاوى مواد سولفوره كهآنها را نيز ساليان درازيست از اين مواد تصفيه مى‏كنند) داراى بوى مشخصىنيست .
    1-2- دوره ابتدايى نشت يابى
    - ايجاد حفره‏هاى متعدد در محوطه مشكوك بهنشت .
    در ابتداى دوره تقريبا" يك قرنى اخيرالذكر تنها پس از اينكه با اعلام ظاهرى مشخص ميشد نشت گاز از لوله‏اى وجود دارد، بااستفاده از سوراخهائى كه در محوطه مشكوك به نشت حفر ميگرديد و آتش زدن گاز خروجى ازآنها و مقايسه اندازه و نحوه سوختن شعله‏ها ،محل نشت را پيدا ميكردند. بعبارت ديگرقبل از اينكه نشت گاز بحدى ميرسيد كه علائم كاملا" مشخصى را ايجاد كند. آگاهى ازاينكه لوله در زيرزمين در حال نشت كردن است وجود نداشت.
    فانوسهاى نشت يابى (WOLF LAMP)
    سپس فانوس نشت يابى (كه در اصل مخصوصاستفاده معدنكاران براى روشنايى بود) مورد استفا ه قرار گرفت. شعله اين فانوس درفضاهاى آلوده به گاز تغيير رنگ و حالت پيدا ميكرد و باينطريق وجود گاز در مسير خطوطلوله كه نشانگر نشت گاز در زيرزمين بود ،مشخص ميشد. البته چنين وسيله‏اى نميتوانستچندان قابل اعتماد باشد و قابل استفاده براى يافتن آثار جزئى نشت گاز در خاكنبود.
    نشت يابى بكمك بوى گاز
    آشنايى پرسنل هر شركت با بوى خاص گاز مورداستفاده آن شركت كه البته بيشتر در مورد گاز قطران مصداق پيدا ميكرد ،از ديگرراههائى بود كه در نشت‏يابى خطوط لوله مورد استفاده قرار ميگرفت و ترجيحا" از كسانىكه مشام حساسترى داشتند، استفاده ميشد .
    2-2- دوره پيدايش تكنيكهاى نسبتا" پيشرفته‏تر
    در دوره بعدى يعنى همان دهه‏هاى اول قرنحاضر دو تكنيك بيشتر مورد توجه قرار گرفت :اولى متكى بر حس بينايى و ناشى از وقوفبه اين واقعيت بود كه نشت گاز پوشش گياهى روى لوله‏هاى گاز را از ميان ميبرد وبرهمين اساس افراد تعليم ديده و باتجربه با تكيه بر تغييرات حتى بسيار جزئى در پوششگياهى مسير خطوط ميتوانستند به وجود نشت گاز پى ببرند و دومى كه يك پيشرفت فنى قابلملاحظه بحساب مى‏آمد، ابداع اولين دستگاههاى گازسنج بود. اين دستگاهها مسئله حدس وگمان در مورد وجود يا عدم وجود گاز را از ميان برد و صراحتا" ميتوانست وجود يا عدمگاز را در سوراخهائى كه در مسير خطوط حفر ميشد نشان دهد.
    اين دوره با ساخت اولين دستگاههاى نشت يابمادون قرمز در دهه 1950 به اوج پيشرفت تكنولوژى خود ميرسد .
    اساس كار دستگاههاى نشت ياب مادون قرمز براصل تفاوت جذب انرژى مادون قرمز توسط گازهاى مختلف استوار ميباشد .
    3-2- دوره جديد و تكنيكهاى پيشرفته
    - دستگاههاى نشت ياب يونيزاسيونشعله
    دوره جديد در نشت يابى كه از اوائل دهه 60آغاز ميگردد و تا به امروز ادامه پيدا ميكند با ابداع دستگاههاى نشت ياب يونيزاسيونشعله از دوره‏هاى گذشته متمايز ميشود.
    اين دستگاهها كه بوسيله نفر و يا در داخلخودرو حمل ميشوند در داخل خود داراى محفظه احتراق هستند كه در آن شعله هيدروژنميسوزد. شعله مذكور داراى بار الكتريكى است. قسمت مكنده، دستگاه از سطح زمين هوا رابداخل دستگاه وارد ميكند چنانچه هيدروكربور همراه هوا باشد بار الكتريكى تغييرميكند. اين تغييرات به قسمت حساس بخش الكترونيك دستگاه منتقل و تقويت شده و روىنمايش دهنده كه عموما" عقربه‏ايست ميزان هيدروكربوربرحسب PPM (قسمت در ميليون PART PER MILLION) نشانداده ميشود .
    تكنولوژى آينده
    اگرچه بنظر ميرسد طى دهه، جارى نيز ايننوع دستگاه كماكان درصدر دستگاههاى نشت يابى قرار داشته باشد ولى كوشش زيادى درجريان است تا انواع ديگر دستگاههاى نشت ياب نيز با صرفه اقتصادى به بازارآيند.
    نمونه‏هاى اين دستگاهها عبارتنداز :
    - نشت يابهاى مادون قرمز
    - نشت يابهاى SONIC
    - نشت يابهاى ليزرى
    - نشت يابهاى استفاده كننده از عامل واسطهمانند هليوم يا ذرات راديواكتيو
    - نشت يابهاى استفاده كننده از خاصيت‏امواجحاصل ازنشت در طول‏لوله (نشت‏يابهاى‏كامپيوترى )
    امواج حاصل از صداى محل نشت در طرفين محلنشت در طول خطوط حركت و پس از رسيدن به سنسورهاى نصب شده در طول خطوط و مقايسه مدتزمان رسيدن امواج به دو سنسور واقع در دو طرف محل نشت، محل نشت تعيينميگردد.
    همچنين نشت يابهاى مادون قرمز پيشرفته كهروى هواپيما يا هليكوپتر نصب ميشوند و وجود گاز متان يا اتان را در فضاى بالاى مسيرخطوط لوله مشخص ميكنند.
    ب - سابقه نشت يابى شركت ملىگاز
    از سال 1363 اقدامات ابتدايى براى نشتيابى خط سراسرى و شبكه قديمى شيراز با استفاده از يك دستگاه F.I.D شروع و سپس تعدادى از اين دستگاهها جهت مناطق گازرسانى سفارش و درسال 1367 ضمن آموزش پرسنل بين مناطق توزيع گردید.

  12. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  13. #7
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    مقدمه


    پس از قرن ها استفاده از تاسیسات بندری و دریایی همچون اسکله ها و سکوهای دریایی و ... ، این موضوع روشن شده است که محیط دریایی از تمام محیط های طبیعی، خورنده تر و پیچیده تر است. بنابراین در طراحی تمامی سازه های دریایی و اسکله ها، باید به عامل خوردگی توجه خاصی مبذول نموده و آن ها را توسط سیستم های مناسب در مقابل خوردگی حفاظت کرد.

    سازه های فولادی در دریا شامل نواحی داخل آب، جذرومدی، پاشش آب و اتمسفری می باشند که هر یک از این نواحی در معرض شرایط حاد خورنده قرار دارند. بنابراین باید روش های متفاوتی جهت کنترل خوردگی نواحی مختلف یک سازه بکار گرفته شود.





    سازه های دریایی اعم از سکوها و اسکله ها دارند، باید سال ها مشغول به کار بوده و کارآیی لازم را داشته باشند. این سازه ها به خصوص در منطقه خلیج فارس - با توجه به شرایط حاد محیطی - شدیدا مورد حمله عوامل خورنده قرار می گیرند. کنترل خوردگی سازه های فولادی در دریا به دو روش کلی حفاظت کاتدی در ناحیه غوطه ور و اعمال پوشش های آلی در نواحی جذر و مدی، پاشش آب و اتمسفری انجام می شود.

    طراحی یک سیستم حفاظت کاتدی جهت کنترل خوردگی باید با توجه به شرایط محیطی، تجهیزات موجود، چگونگی نصب سازه، مدت زمان بهره برداری از سازه و .... صورت گیرد. در نظر گرفتن کلیه فاکتورها، موجب عملکرد مناسب سیستم حفاظت کاتدی، کاهش هزینه های خوردگی و افزایش عمر مفید سازه خواهد بود. همچنین امروزه استفاده از پوشش های آلی در ناحیه زیر آب سازه های فولادی، علاوه بر به کارگیری سیستم های حفاظت کاتدی، درحال توسعه است.





    __________________
    حفاظت کاتدی


    حفاظت کاتدی عبارت است از جلوگیری یا کاهش خوردگی فلزات به طوری که توسط اعمال یک جریان الکتریکی خارجی (یک سو) و یا تماس آن با یک آند فدا شونده، فلز مورد نظر بصورت کاتد در آید. به بیان دیگر حفاظت کاتدی فرآیندی است که با ایجاد میدان الکتریکی در سطح فلز، از واکنش خوردگی در سطح آن جلوگیری می کند. برای اینکه یون های فلزی تولید شده به طور کامل از بین بروند، باید میدان الکتریکی محافظ، قدرت کافی داشته باشد. منبع میدان الکتریکی که برای مقابله با واکنش خوردگی مورد استفاده قرار می گیرد، باید دارای یک جریان پیوسته و مستقیم مانند ترانسفورماتورهای DC همراه آندهای پلاتینه باشد. این روش را حفاظت کاتدی توسط جریان معکوس می نامند. روش دیگر حفاظت کاتدی استفاده از آندهای فداشونده است. بدین ترتیب که فلزات فعال تر از فولاد را (به عنوان مثال) به عنوان آند به سازه وصل کرده تا بجای فلز سازه خورده شود.






    گاهی حفاظت کاتدی را به دو دسته گالوانی و الکترولیتی هم دسته بندی می کنند. حفاظت کاتدی گالوانی همان روش استفاده از آندهای فداشونده است که در آن آندها را به شکل مجزا و یا به صورت پوشش (فولاد گالوانیزه) در تماس با فلز اصلی قرار می دهند. در حفاظت کاتدی الکترولیتی، فلز در معرض خوردگی به عنوان کاتد، و یک فلز غیر قابل حل مثل پلاتین، سرب و گاهی نیز قابل حل نظیر منیزیم و آلومینیوم را به عنوان آند، توسط یک دستگاه تولید جریان الکتریکی مستقیم به هم متصل می کنند. در ادامه هر دو روش به طور کامل توضیح داده می شود.





    حفاظت کاتدی برای جلوگیری از خوردگی فلزاتی از قبیل فولاد، مس، سرب و برنج در زمین (خاک) و محلول های مختلف آبی به کار برده می شود. به کمک حفاظت کاتدی می توان از خوردگی حفره ای فلزات رویین از جمله فولادهای زنگ نزن نیز جلوگیری کرد. همچنین جهت تقلیل ترک های خوردگی تنشی در فلزاتی مثل برنج ها، فولادها، فولادهای زنگ نزن، منیزیم، آلومینیم و ... و نیز خوردگی خستگی در اغلب فلزات و خوردگی بین دانه ای در فلزاتی مانند فولادهای زنگ نزن آستنیتی و همچنین زدایش روی برنج ها، می توان از حفاظت کاتدی استفاده کرد. لازم به ذکر است که روش های آند فداشونده و جریان معکوس، به طور وسیعی برای حفاظت از سکوهای دور از ساحل، تجهیزات حفاری، خطوط لوله زیر آب، تاسیسات بندری مثل اسکله و بنادر و پل ها و نیز کشتی ها، استفاده می شود. در برخی کاربردهای دیگر نظیر سکوهای عظیم حفاری از ترکیب هر دو روش جریان معکوس و آندهای قربانی شونده استفاده می کنند.

    در سازه های دریایی معمولا از روش حفاظت کاتدی و پوشش دهی رنگ - به علت صرفه اقتصادی بیشتر- توأمان استفاده می شود. در این صورت حتی اگر قسمتی از رنگ پوشش هم از سطح جدا شود، به علت حفاظت کاتدی سطح، احتیاجی به مرمت پوشش نخواهد بود. البته شرکت های سازنده تجهیزات دریایی در این مورد نظرات مختلفی دارند. عده ای ترجیح می دهند که سازه های زیر آب خود را پوشش دهند و عده ای هم فقط از حفاظت کاتدی برای آن ها استفاده می کنند. به هر حال در اینجا، تنها صرفه اقتصادی است که چه از لحاظ هزینه و چه از لحاظ عمر مفید، روش کار را تعیین خواهد کرد.

    نواحی مختلف یک سکوی نفتی و روش حفاظت در هر منطقه در شکل زیر نشان داده شده است.



    This image has been resized. Click this bar to view the full image. The original image is sized 919x681 and weights 91KB.

  14. 2 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  15. #8
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض حفاظت کاتدی

    دید کلی

    بطور کلی ، فلزات سه دسته‌اند. یک دسته ، آنهایی که مثلا طلا و پلاتین ، در مجاورت هوا اکسید نمی‌شوند و نیازی به محافظت ندارند.
    دسته دوم ، آنهایی که وقتی در مجاورت هوا قرار می‌گیرند، اتمهای سطحشان اکسید می‌شوند، ولی اکسید آنها مقاوم است و چسبیده به فلز باقی می‌ماند و خود لایه محافظی برای فلز می‌شود. این گونه فلزات هم نیازی به محافظت ندارند. مثل Zn ، Al ، CO ، Ni ، Sn ، Cr و نظیر آنها.
    دسته سوم فلزاتی که وقتی سطح آنها در مجاورت هوا اکسید می‌گردد، اکسید آنها متخلخل است و به فلز نمی‌چسبد و از بدنه فلز کنده می‌شود که فلز به تدریج فاسد شده ، از بین می‌رود؛ مثل آهن. اینگونه فلزات را به روشهای متفاوت از زنگ زدن محافظت می‌نمایند، روشهایی مثل رنگ زدن ، زدن ضد زنگ ، چرب کردن سطح فلز بوسیله یک ماده روغنی مانند گریس ، لعاب دادن ، آب فلز کاری و حفاظت کاتدی.
    اصول حفاظت کاتدی


    عملیات گالوانیزاسیون ، از روشهای حفاظت کاتدی

    در کنار فلز فاسد شدنی ، یک فلز با پتانسیل احیاء کمتر قرار می‌دهند تا اگر این دو فلز باهم یک پیل الکتروشیمیایی تشکیل دادند، فلز دارای E احیای بیشتر، در نقش کاتد پیل قرار گیرد و خورده نشود. در این پیل ، فلز دارای E کمتر خورده می‌شود و فلز مقابلش را ازخطر زنگ زدن می‌رهاند. این طریقه حفاظت را حفاظت کاتدی می‌نامند.
    امروزه ، بدنه کشتیها ، پایه‌های اسکله‌ها و لوله‌های انتقال نفت و گاز را که در زیر زمین کار می‌گذارند، با همین روش حفاظت می‌نمایند. مثلا در کنار آهن ، فلز منیزیم قرار می‌دهند که منیزیم ، الکترون می‌دهد و خورده می‌شود.
    آب فلز کاری

    آب کاری فلزات به دو روش صورت می‌گیرد:
    گالوانیزاسیون

    در این روش ، فلز فاسد شدنی را در مذاب یک فلز فاسد نشدنی فرو می‌برند و بیرون می‌آورند تا سطح آن از یک لایه فلز فاسد نشدنی پوشیده شود. مثلا ورقه‌های نازک آهنی را در مذاب فلز روی فرو می‌برند و بیرون می‌آورند تا سطح آنها از فلز روی پوشیده شود و به این طریق ورقه‌های آهن سفید یا آهن گالوانیزه تهیه می‌نمایند که در ساختن لوازمی مثلا لوله بخاری ، کانال کولر ، شیروانی منازل و از این قبیل بکار می‌رود. لوله‌های آب هم ، آهن سفید هستند.
    اگر ورقه‌های آهنی را در قلع مذاب بزنیم و بیرون آوریم و سطح آنها را قلع اندود کنیم، حلبی بدست می‌آید که از آن در ساختن قوطی مواد غذایی ، نظیر کنسروها استفاده می‌گردد.
    الکترولیز

    در این روش ، فلز آب گیرنده یا فاسد شدنی را بجای کاتد و فلز پوشش دهنده را بجای آند قرار می‌دهند و در ظرف الکترولیز ، محلولی از یک نمک فلز آب دهنده (فلز پوشش دهنده) را به عنوان الکترولیت می‌ریزند. با برقراری جریان ، اتمهای فلز آب دهنده (فلز پوشش دهنده) به صورت یون مثبت از آند کنده می‌شود و از طریق الکترولیت ، بطرف کاتد یا آب گیرنده (فلز مورد آبکاری) رفته ، از آن الکترون می‌گیرند و مجددا به صورت فلز در آمده ، بر سطح فلز (مورد آبکاری) می‌نشینند و تمامی سطح آن را می‌پوشانند.
    به عنوان نمونه در آب فلز کاری یک قاشق مسی در نقش کاتد و نقره در نقش آند است. قاشق مسی را به کاتد وصل می‌کنیم و الکترولیت می‌تواند محلول نیترات نقره باشد. اتمهای نقره به صورت یوناز ورقه نقره‌ای جدا شده و بسوی قاشق مسی می‌روند. از آن الکترون می‌گیرند و به صورت اتم در آمده بر سطح قاشق می‌نشینند.
    زیرا با این که در آب ، یونهم وجود دارد، یونهای در رقابت با یونهای برنده می‌شوند و به کاتد می‌روند. در رقابت میان یونهای ،نیز یونهای برنده شده ، به آند می‌روند و الکترون اضافی خود را از دست داده و گاز اکسیژن تولید می‌نمایند.

    ظرف الکتولیز
    تفاوت آهن گالوانیزه و حلبی

    اگر سطح آهن سفید خراش بردارد، آهن و روی باهم پیل الکتروشیمیایی تشکیل می‌دهند. در این پیل ، روی خرده می‌شود، زیرا پتانسیل احیاء روی از پتانسیل احیاء آهن کمتر است. اما اگر سطح حلبی خراش بردارد، قلع و آهن باهم پیل الکتروشیمیایی تشکیل می‌دهند. در این پیل ، آهن خورده می‌شود، زیرا پتانسیل احیاء قلع از پتانسیل احیاء آهن بیشتر است و آهن در نقش آند پیل عمل می‌کند و از بین می‌رود که این طریقه زنگ زدن را زنگ زدن الکتروشیمیایی می‌نامند.
    روئین شدن

    باید بدانیم که آهن ، در محیط مرطوب و اکسیژن‌دار زنگ می‌زند و زنگ تولید شده ، اکسید آهن III آبدار است که فرمول آن را معمولا بصورت و می‌نویسند. چون مقدار آب آن در همه موارد یکسان نیست، اغلب موارد آن را به صورت و نشان می‌دهند. محیط اسیدی (مثلا هوای دارای و در مجاورت با فلزی که تمایل کمتری برای از دست دادن الکترون دارد، به زنگ زدن یک فلز کمک می‌نماید.
    روئین شدن یا پاسیو شدن بعضی از فلزات را مربوط به تشکیل لایه‌ای از اکسید می‌دانند که سطح فلز را می‌پوشاند و در اسید حل نمی‌شود. در مورد آهن که اکسید مغناطیسی تشکیل می‌دهد، این اکسید در بعضی اسیدها حل نمی‌شود.
    آند و کاتد

    پیلی که به عنوان منبع انرژی الکتریکی بکار می‌رود، یک پیل ولتایی یا یک گالوانی نامیده می‌شود که از نام آلساندو ولتا و لوئیجی گالوانی ، نخستین کسانی که تبدیل انرژی شیمیایی به انرژی الکتریکی را مورد آزمایش قرار دادند، گرفته شده است. در این پیل ، نیم پیلی که در آن واکنش اکسیداسیون صورت می‌گیرد، نیم پیل آند و نیم پیلی که در آن واکنش کاهش یا احیا صورت می‌گیرد، نیم پیل کاتد نامیده می‌شود. در ترسیم یک پیل گالوانی ، نیم پیل آند در سمت چپ و نیم پیل کاتد در سمت راست نمایش داده می‌شود.

    پیل دانیل

    در یک دانیل ، نیم پیل سمت چپ شامل الکترودی از فلز روی و محلول ZnSO4 و نیم پیل سمت راست شامل الکترودی از فلز مس در یک محلول CuSO4 است. این دو نیم پیل توسط یک دیواره متخلخل از هم جدا شده‌اند. این دیواره از اختلاط مکانیکی محلولها ممانعت می‌کند، ولی یونها تحت تأثیر جریان الکتریکی از آن عبور می‌کنند. واکنش نیم پیل آند به صورت Zn(s) → Zn2 + (aq)+ 2e و واکنش نیم پیل کاتد به صورت (2e + 2 + Cu(aq) → Cu)s است.
    آند

    هرگاه الکترودهای روی و مس با یک سیم به هم متصل شوند، الکترونها از الکترود روی به طرف الکترود مس جاری می‌شوند. در الکترود روی ، فلز روی اکسید می‌شود و به صورت یونهای روی در می‌آید. این الکترود ، آند پیل است و الکترونهایی که محصول اکسیداسیون هستند، از این قطب ، پیل را ترک می‌کنند.
    کاتد

    الکترونهای ایجاد شده در آند ، از مدار خارجی گذشته به الکترود مس می‌رسند و در آنجا یونهای مس II را کاسته و آنها را به مس فلزی تبدیل می‌سازند. مسی که بدین ترتیب تولید می‌شود، بر روی الکترود سمت راست می‌نشیند. الکترود مس ، کاتد پیل است که در آنجا الکترونها وارد پیل (یا سلول) می‌شوند و کاهش یا احیا صورت می‌گیرد.
    علامت آند و کاتد

    چون الکترونها در الکترود روی تولید می‌شوند، این آند به عنوان قطب منفی در نظر گرفته می‌شود. الکترونها در مدار خارجی هر پیل ولتایی که در حال کارکردن است، از قطب منفی به طرف قطب مثبت سیر می‌کنند. بنابراین کاتد که در آنجا الکترونها در واکنش الکترودی مصرف می‌شوند، قطب مثبت است.
    جهت حرکت آنیونها و کاتیونها

    در نخستین نظر ، شگفت آور به نظر می‌رسد که آنیونها یعنی یونهایی که بار منفی دارند، باید به طرف آند که الکترود منفی است، سیر کنند و بر عکس کاتیونها که حامل بار مثبت هستند به طرف کاتد که قطب مثبت است، بروند (باید توجه داشت که در داخل پیل حرکت یونها مدار الکتریکی را کامل می‌کنند). اما بررسی دقیق واکنشهای الکترودی پاسخ این مساله ظاهرا غیر عادی را بدست می‌دهد. در آند ، یونهای روی تولید می‌شوند و الکترونها در فلز ، به جای می‌مانند. از طرف دیگر ، خنثی بودن الکتریکی محلول همواره باید حفظ شود.
    بنابراین در محلول پیرامون الکترود باید به همان قدر بار منفی از آنیونها وجود داشته باشد که بار مثبت از کاتیونها وجود دارد. از این رو یونهای SO-24 به طرف آند می‌روند تا اثر یونهای Zn2+ را که تولید می‌شوند خنثی کنند. در همان زمان ، یونهای روی از آند دور می‌شوند و به طرف کاتد می‌روند. در کاتد الکترونها صرف کاهش یونهای 2+Cu و تبدیل آنها به فلز مس می‌شوند. در حالی که یونهای 2+Cu بار خود را تخلیه می‌کنند، یونهای 2+Cu بیشتری به محوطه پیرامون کاتد می‌آیند تا جای یونهای خارج شده را بگیرند. اگر چنین نشود ، یونهای SO2-4 اضافی در اطراف کاتد ایجاد می‌شوند.

    نقش دیواره متخلخل

    دیواره متخلخل را به این منظور اضافه می‌کنند که از اختلاط مکانیکی محلول نیم پیلها ممانعت به عمل آورد. بدیهی است که اگر یونهای 2+Cu با الکترود فلز روی تماس پیدا کنند، الکترونها به جای آن که از مدار خارجی بگذرند، مستقیما به یونهای 2+Cu منتقل خواهند شد. وقتی که سلول بطور عادی کار می‌کند، انتقال از این مدار کوتاه صورت نمی‌گیرد. زیرا یونهای 2+Cu در جهتی حرکت می‌کنند که از الکترود روی دور شوند.
    پتانسیل احیا و نقش آن در تعیین آند و کاتد

    در مقایسه پتانسیل احیا دو عنصر ، عنصری که پتانسیل احیای بالاتری دارد، به عنوان کاتد و عنصری که پتانسیل احیای پایین تری دارد، به عنوان آند پیل در نظر گرفته می‌شود. در پیل دانیل نیز ، چون روی پتانسیل احیای پایین تری در مقایسه با فلز مس دارد، به عنوان آند و مس به عنوان کاتد و عنصر احیا شونده بکار رفته است.
    چگونگی نمایش آند و کاتد در یک پیل

    اگر در پیل دانیل ، محلولهای 1M از ZnSO4 و 1M از CuSO4 بکار رفته باشد، آن پیل را با نمادگذاری زیر نشان می‌دهیم:
    (Zn(s)│Zn2 + (1M)│Cu2 + (1M)│Cu)s
    که در آن ، خطوط کوتاه عمودی ، حدود فازها را نشان می‌دهند. بنابر قرار داد ، ماده تشکیل دهنده آند را اول و ماده تشکیل دهنده کاتد را در آخر می‌نویسیم و مواد دیگر را به ترتیبی که از طرف آند با آنها برخورد می‌کینم، میان آنها قرار می‌دهیم.
    آنیون و کاتیون
    دید کلی

    نیروی پیش برنده یک واکنش یونی ، جاذبه الکتروستاتیکی متقابل یون‌های ناهمنام است. این جاذبه باعث آزاد شدن انرژی شبکه می‌شود. انرژی شبکه، عامل مهمی در تعیین تعداد بار منفی یا مثبتی است که اتم‌ها به هنگام تشکیل یک بلور یونی می‌پذیرند.
    نامگذاری ترکیبات یونی

    نامگذاری ترکیبات یونی بر قواعدی چند استوار است. ابتدا از کاتیون (یون مثبت) ترکیب نام برده می‌شود و آنیون (یون منفی) پس از آن ذکر می‌شود.
    کاتیون


    بیشتر کاتیون ها ، یونهای تک اتمی‌اند که توسط فلزات بوجود می‌آیند. اگر فلز تنها یک نوع کاتیون ایجاد کند، نام یون ، همانند فلز مربوط است. +Na یون سدیم است. یعنی فلز سدیمی که ابتدا بصورت گازی در آمده است و از سدیم یک الکترون با اعمال انرژی یونش گرفته شده است. 2+Mg یون منیزیم است. 3+Al ، یون آلومینیوم است.
    برخی از فلزات بیش از یک نوع کاتیون بوجود می‌آورند. در اینگونه موارد ، با نشان دادن تعداد بار کاتیونها در نامشان آنها را متمایز می‌کنیم. بار این نوع کاتیونها بصورت ارقام لاتین بعد از نام فارسی عنصر قرار داده می‌شود. +Cu ، یون مس (I) و 2+Cu ، یون مس (II) است. در روشی قدیمی‌تر برای متمایز کردن دو نوع یون بوجود آمده از یک فلز ، پسوندی به نام فلز افزوده می‌شود. در این روش ، هرگاه نماد فلزی از لاتین مشتق شده باشد، از نام لاتین فلز استفاده می‌شود.
    پسوند "- و" برای یون دارای بار مثبت کمتر و پسوند "- یک" برای یون با بار مثبت بیشتر مورد استفاده قرار می‌گیرد. +Cu ، یون کوپرو و 2+Cu یون کوپریک است. +Fe ، یون فرو و 2+Fe یون فریک است.
    توجه کنید که در روش بالا تعداد بارها بروشنی بیان نمی‌شود و نیز این روش برای فلزاتی که بیش از دو نوع کاتیون تولید می‌کنند، قابل استفاده نیست.
    آنیون


    آنیون های تک‌اتمی از اتم فلزات به وجود می‌آیند. نام آنها از طریق حذف بخش آخر نام عنصر و افزودن پسوند "- ید" به باقیمانده به دست می‌آید. -Cl یون کلرید است. 2-O ، یون اکسید است. 3-N یون نیترید است. اما ، تمام آنیونهایی که نامشان به "ید" ختم می‌شود تک اتمی نیستند. بلکه معدودی آنیونهای چند اتمی نیز نامشان با این پسوند ختم می‌شود. مثلا -CN یون سیانید است. -OH یون هیدروکسید است. 2-O2 یون ******د است.
    آنیونهای چند اتمی بسیاری شناخته شده‌اند. بعنوان مثال 2-O2 یون پراکسید ، Cr2O7-2 یون کرومات ، SO3-2 یون سولفیت و 3-AsO4 یون آرسنات است.
    یون چند اتمی

    این یون ، یونی است که از چند اتم که با یکدگیر پیوند کووالانسی دارند، بوجود می‌آید. کایتونهای چند اتمی معدودند و دو نوع نمونه متداول عبارت اند از :
    • +NH4 یون آمونیوم و 2+Hg2 یون جیوه (I) یا یون مرکورو.
    • یون 2+Hg2 یون جیوه I نامیده شده است. زیرا می‌توان آن را متشکل از دو یون +Hg (که با یکدیگر پیوند کووالانسی دارند) در نظر گرفت.
    نام ترکیبات یونی

    نام ترکیبات یونی ، متشکل از نام کاتیون و پس از آن ، نام آنیون (بصورت لغتی جداگانه) است.
    • Fe2O3: آهن (II) اکسید یا فریک اسید.
    • PbCO3: سرب (II) کربنات یا پلمبوکربنات.
    • NH4)2S): آمونیوم سولفید
    • Mg(NO3)2: منیزیم نیترات
    • Cu(CN)2: مس (II) سیانید یا کوپریک سیانید.
    اکسیداسیون-احیا

    واکنشی را که در آن ، تبادل الکترون صورت می‌گیرد، واکنش اکسیداسیون- احیا Oxidation - reduction نامیده می‌شود.

    تبادل الکترونی

    احیا کننده 1<----- ne + احیا کننده 1
    اکسید کننده 2<-----ne - احیا کننده 2
    اکسید کننده 2 + اکسید کننده1<----- احیا کننده 2 + احیا کننده 1
    پس در نتیجه تبادل الکترونی بین یک اکسید کننده و یک احیا کننده یک واکنش شیمیایی رخ می دهد.
    فرآیند اکسیداسیون (اکسایش)

    فرآیندی است که در آن یک جسم (اکسید کننده) الکترون می‌گیرد و عدد اکسایش یک اتم افزایش می‌یابد.
    فرآیند احیا (کاهش)

    فرایندی است که در آن یک جسم (احیا کننده) الکترون از دست می‌دهد و عدد اکسایش یک اتم کاهش می‌یابد.
    مثالی از واکنشهای اکسایش و کاهش

    بر این اساس ، واکنش زیر یک واکنش اکسایش و کاهش می‌باشد. چون عدد اکسایش اتم S از صفر به +4 افزایش پیدا می‌کند و می‌گوییم گوگرد اکسید شده است و عدد اکسایش اتم O از صفر به -2 کاهش پیدا کرده است و می‌گوییم اکسیژن کاهیده شده است:
    S + O2 → SO2
    که در آن ، در طرف اول عدد اکسیداسیون هر دو ماده صفر و در طرف دوم ، عدد اکسیداسیون گوگرد در ترکیب +4 و اکسیژن ، -2 است.
    اما در واکنش زیر اکسایش- کاهش انجام نمی‌شود، زیرا تغییری در عدد اکسایش هیچ یک از اتمها به وجود نیامده است:
    SO2 + H2O → H2SO4
    که در SO2 ، عدد اکسیداسیون S و O بترتیب ، +4 و -2 و در آب ، عدد اکسیداسیون H و O بترتیب +1 و -2 و در اسید در طرف دوم ، عدد اکسیداسیون H و S و O بترتیب ، +1 ، +4 و -2 است.
    عامل اکسنده و عامل کاهنده

    با توجه به چگونگی نسبت دادن اعداد اکسایش ، واضح است که نه عمل اکسایش و نه عمل کاهش بتنهایی انجام پذیر نیستند. چون یک ماده نمی‌تواند کاهیده شود مگر آن که هم‌زمان ماده ای دیگر ، اکسید گردد، ماده کاهیده شده ، سبب اکسایش است و لذا عامل اکسنده نامیده می‌شود و ماده‌ای که خود اکسید می‌شود، عامل کاهنده می‌نامیم.
    بعلاوه در هر واکنش ، مجموع افزایش اعداد اکسایش برخی عناصر ، باید برابر مجموع کاهش عدد اکسایش عناصر دیگر باشد. مثلا در واکنش گوگرد و اکسیژن ، افزایش عدد اکسایش گوگرد ، 4 است. تقلیل عدد اکسایش ، 2 است، چون دو اتم در معادله شرکت دارد، کاهش کل ، 4 است.
    موازنه معادلات اکسایش- کاهش


    دو روش برای موازنه واکنشهای اکسایش- کاهش بکار برده می‌شود: روش یون- الکترون و روش عدد اکسایش.
    روش یون- الکترون برای موازنه معادلات اکسایش- کاهش

    در موازنه معادلات به روش یون- الکترون ، دو دستور کار که کمی با هم متفاوت‌اند، مورد استفاده قرار می‌گیرد. یکی برای واکنشهایی که در محلول اسیدی انجام می‌گیرد و دیگری برای واکنشهایی که در محلول قلیایی صورت می‌پذیرد.
    مثالی برای واکنشهایی که در محلول اسیدی رخ می‌دهد، عبارت است:
    Cr2O7-2 + Cl- → Cr+3 + Cl2
    این واکنش موازنه نشده ، طی عملیات زیر موازنه می شود:
    _ابتدا معادله را به صورت دو معادله جزئی که یکی برای نشان دادن اکسایش و دیگری برای نشان دادن کاهش است، تقسیم کرده و عنصر مرکزی را در هر یک از این نیم واکنش ها موازنه می کنیم:
    Cr2O7-2 → 2Cr+3
    2Cl- → Cl2
    _اتمهای O و H را موازنه می‌کنیم. در سمتی که کمبود اکسیژن دارد، به ازای هر اکسیژن یک H2O اضافه می‌کنیم و در سمتی که کمبود هیدروژن دیده می‌شود، با افزودن تعداد مناسب +H آن را جبران می کنیم. در مثال بالا، طرف راست ، معادله جزئی اول 7 اتم اکسیژن کم دارد، پس به طرف مزبور 7H2O افزوده می‌شود. پس اتمهای H معادله جزئی اول را با اضافه کردن چهارده +H به طرف چپ معادله، موازنه می‌کنیم. معادله جزئی دوم ، بصورت نوشته شده ، از لحاظ جرمی ، موازنه است:
    14H+ + Cr2O7-2 → 2Cr+3 + 7H2O
    2Cl-→Cl2
    _در مرحله بعد ، باید معادلات جزئی را از نظر بار الکتریکی موازنه می‌کنیم. در معادله جزئی جمع جبری بار الکتریکی طرف چپ برابر +12 و در طرف راست +6 است. 6 الکترون به سمت چپ اضافه می‌شود تا موازنه بار برای معادله جزئی اول حاصل شود. معادله دوم با افزودن دو الکترون به طرف راست ان موازنه می‌شود، ولی چون تعداد الکترونهای از دست‌رفته در یک معادله جزئی باید برابر تعداد الکترونهای بدست آمده در معادله جزئی دیگر باشد، بنابراین طرفین معادله جزئی دوم را در 3 ضرب می‌کنیم:
    6e- + 14H+ +Cr2O7-2 → 2Cr+3 + 7H2O
    6Cl- → 3Cl2 + 6e
    _معادله نهایی ، با افزایش دو معادله جزئی و حذف الکترونها بدست می‌آید:
    14H+ + Cr2O7-2 + 6Cl- → 2Cr+3 + 3Cl2 + 7H2O
    مثالی برای واکنش هایی که در محلول قلیایی صورت می‌گیرد:
    MnO4- + N2H4 → MnO2 + N2
    _معادله به دو معادله جزئی تقسیم می شود:
    MnO4- → MnO2
    N2H4→N2
    _برای موازنه H و O در این واکنش‌ها ، درسمتی که کمبود اکسیژن دارد، به ازای هر اتم اکسیژن -2OH و سمت دیگر یک H2O اضافه می‌کنیم و در سمتی که کمبود هیدروژن دارد به ازای هر اتم هیدروژن ، یک H2O و در سمت مقابل یک -OH اضافه می‌کنیم. سمت راست معادله جزئی اول دو اتم O کم دارد. لذا -4OH به سمت راست و 2H2Oبه سمت چپ می‌افزاییم:
    2H2O + MnO4- → MnO2 + 4OH
    برای موازنه جرمی معادله جزئی دوم ، باید چهار اتم هیدروژن به سمت راست اضافه کنیم، لذا 4H2O به سمت راست و -4OH به سمت چپ اضافه می‌کنیم:
    -4OH + N2H4 → N2 + 4H2O
    _برای موازنه بار الکتریکی ، هر جا لازم است، الکترون اضافه می‌کنیم و در این جا بطرف چپ معادله جزئی اول ، سه الکترون و بطرف چپ معادله جزئی دوم ، چهار الکترون افزوده می‌شود و برای موازنه کردن الکترونهای بدست آمده و از دست رفته ، مضرب مشترک گرفته و معادله اول را در 4 و معادله دوم را در 3 ، ضرب می‌کنیم:
    12e- + 8H2 + 4MnO4- → 4MnO2 + 16OH
    _جمع دو معادله جزئی، معادله نهایی را بدست می‌دهد:
    4MnO4- + 3N2H4 →4OH- + 4MnO2 + 3N2 + 4H2O
    روش عدد اکسایش برای موازنه واکنشهای اکسایش- کاهش

    موازنه شامل سه مرحله است. برای مثال واکنش نیتریک اسید و هیدروژن سولفید را در نظر می‌گیریم. معادله موازنه نشده به قرار زیر است:
    HNO3 + H2S→ NO + S + H2O
    _برای تشخیص اتمهایی که کاهیده یا اکسیده می‌شوند، اعداد اکسایش آنها را از معادله بدست می‌آوریم:
    نیتروژن کاهیده شده (از +5 به +2 ، کاهشی معادل 3 در عدد اکسایش) و گوگرد اکسید شده است (از -2 به صفر ، یعنی افززایشی معادل 2 در عدد اکسایش)
    _برای ان که مجموع کاهش در اعداد اکسایش برابر با مجموع افزایش این اعداد باشد، ضرایبی متناسب به هر ترکیب نسبت می‌دهیم:
    2HNO3 + 3H2S→2NO + 3S +H2O
    _موازنه معادله را ، با بررسی دقیقتر ، کامل می‌کنیم. در مراحل پیشین تنها موازنه موادی مطرح شد که اعداد اکسایش انها تغییر می‌کند. در این مثال‌ ، هنوز ضریبی برای H2O در نظر گرفته نشده است. ولی ملاحظه می‌شود که در سمت چپ واکنش 8 اتم H وجود دارد. همان سمت 4 اتم O نیز اضافی دارد. بنابراین ، برای تکمیل موازنه ، باید در سمت راست معادله ، 4H2O نشان داده شود:
    2HNO3 + 3H2S → 2NO +3S + 4H2O
    پس معادلات اکسایش- کاهش مانند واکنش‌های الکتروشیمیایی و واکنش های یونی را می‌توان با یکی از دو روش نامبرده موازنه کرد.
    الکتروشیمی


    تمام واکنشهای شیمیایی ، اساسا ماهیت الکتریکی دارند، زیرا الکترونها در تمام انواع پیوندهای شیمیایی (به راههای گوناگون) دخالت دارند. اما الکتروشیمی بیش از هر چیز بررسی پدیده‌های اکسایش- کاهش است. روابط بین تغییر شیمیایی و انرژی الکتریکی ، هم از لحاظ نظری و هم از لحاظ عملی حائز اهمیت است.
    از واکنشهای شیمیایی می‌توان برای تولید انرژی الکتریکی استفاده کرد (در سلولهایی که سلولهای ولتایی یا سلولهای گالوانی نامیده می‌شوند) و انرژی الکتریکی را می‌توان برای تبادلات شیمیایی بکار برد (در سلولهای الکترولیتی). علاوه بر این ، مطالعه فرآیندهایی الکتروشیمیایی منجر به فهم و تنظیم قواعد آنگونه از پدیده‌های اکسایش - کاهش که خارج از اینگونه سلولها روی می‌دهند، نیز می‌شود. با برخی فرآیندهای الکتروشیمیایی آشنا می‌شویم.
    رسانش فلزی

    جریان الکتریکی ، جاری شدن بار الکتریکی است. در فلزات ، این بار بوسیله الکترونها حمل می‌شود و این نوع رسانش الکتریکی ، رسانش فلزی نامیده می‌شود. با بکار بردن یک نیروی الکتریکی که توسط یک باتری یا هر منبع الکتریکی دیگر تامین می‌گردد، جریان الکتریکی حاصل می‌شود و برای تولید جریان الکتریکی ، یک مدار کامل لازم است. تشبیه جریان الکتریسیته به جریان یک مایع ، از قدیم متداول بوده است. در زمانهای گذشته ، الکتریسیته به‌صورت جریانی از سیال الکتریکی توصیف می‌شد.
    قراردادهای قدیمی که سابقه آنها ممکن است به "بنجامین فرانکلین" برسد و پیش از آن که الکترون کشف شود، مورد پذیرش بوده است، بار مثبتی به این جریان نسبت می‌دهد. ما مدارهای الکتریکی را با حرکت الکترونها توجیه خواهیم کرد. اما باید به خاطر داشت که جریان الکتریکی بنا به قرارداد بطور اختیاری مثبت و به صورتی که در جهت مخالف جاری می‌شود، توصیف می‌گردد.
    جریان الکتریکی برحسب آمپر (A) و بار الکتریکی برحسب (C) کولن اندازه گیری می‌شود. کولن ، مقدار الکتریسیته است که در یک ثانیه با جریان 1 آمپر از نقطه‌ای می‌گذرد: 1C = 1A.S و 1A = 1C/S . جریان با اختلاف پتانسیل الکتریکی که بر حسب ولت اندازه گیری می‌شود، در مدار رانده می‌شود. یک ولت برابر یک ژول بر کولن است. 1V = 1J/C یا 1V.C = 1J . یک ولت لازم است تا یک آمپر جریان را از مقاومت یک اهم بگذراند. I=ε/R یا ε=IR
    رسانش الکترولیتی

    رسانش الکترولیت ، هنگامی صورت می‌گیرد که یونهای الکترولیت بتوانند آزادانه حرکت کنند، چون در این مورد ، یونها هستند که بار الکتریکی را حمل می‌کنند. به همین دلیل است که رسانش الکترولیتی ، اساس توسط نمکهای مذاب و محلولهای آبی الکترولیتها صورت می‌گیرد. علاوه بر این ، برای تداوم جریان در یک رسانای الکترولیتی لازم است که حرکت یونها با تغییر شیمیایی همراه باشد. منبع جریان در یک سلول الکترولیتی ، الکترونها را به الکترود سمت چپ می‌راند.
    بنابراین می‌توان گفت که این الکترود ، بار منفی پیدا می‌کند. این الکترونها از الکترود مثبت سمت راست کشیده می‌شوند. در میدان الکتریکی که بدین ترتیب بوجود می‌آید، یونهای مثبت یا کاتیونها به طرف قطب منفی یا کاتد و یونهای منفی یا آنیونها به طرف قطب مثبت یا آند جذب می‌شوند. در رسانش الکترولیتی ، بار الکتریکی بوسیله کاتیونها به طرف کاتد و بوسیله آنیونها که در جهت عکس به طرف آند حرکت می‌کنند، حمل می‌شود.
    برای این که یک مدار کامل حاصل شود، حرکت یونها باید با واکنشهای الکترودی همراه باشد. در کاتد ، اجزای شیمیایی معینی (که لازم نیست حتما حامل بار باشند) باید الکترونها را بپذیرند و کاهیده شوند و در آند ، الکترونها باید از اجزای شیمیایی معینی جدا شده ، در نتیجه آن ، اجزا اکسید شوند. الکترونها از منبع جریان خارج شده ، به طرف کاتد رانده می‌شوند.
    عوامل موثر بر رسانش الکترولیتی

    رسانش الکترولیتی به تحرک یونها مربوط می‌شود و هر چند که این یونها را از حرکت باز دارد، موجب ایجاد مقاومت در برابر جریان می‌شود. عواملی که بر رسانش الکترولیتی محلولهای الکترولیت اثر دارند، عبارتند از : جاذبه بین یونی ، حلال پوشی یونها و گرانروی حلال. انرژی جنبشی متوسط یونهای ماده حل شده با افزایش دما زیاد می‌شود و بنابراین مقاومت رساناهای الکترولیتی ، بطور کلی با افزایش دما کاهش می‌یابد. یعنی رسانایی زیاد می‌شود. به‌علاوه ، اثر هر یک از سه عامل مذکور با زیاد شدن دما کم می‌شود.
    الکترولیز (برقکافت)

    الکترولیز یا برقکافت سدیم کلرید مذاب ، یک منبع صنعتی تهیه فلز سدیم و گاز کلر است. روشهای مشابهی برای تهیه دیگر فلزات فعال ، مانند پتاسیم و کلسیم بکار می‌روند. اما چنانکه بعضی از محلولهای آبی را برقکافت کنیم، آب به جای یونهای حاصل از ماده حل شده در واکنشهای الکترودی دخالت می‌کند. از اینرو ، یونهای حامل جریان لزوما بار خود را در الکترودها خالی نمی‌کنند. مثلا در برقکافت محلول آبی سدیم سولفات ، یونهای سدیم به طرف کاتد و یونهای سولفات به طرف آند حرکت می‌کنند، اما بار این هر دو یون با اشکال تخلیه می‌شود.
    بدین معنی که وقتی عمل برقکافت بین دو الکترود بی‌اثر در جریان است، در کاتد ، گاز هیدروژن بوجود می‌آید و محلول پیرامون الکترود ، قلیایی می‌شود:
    (2H2O + 2e → 2OH- + H2(g
    یعنی در کاتد ، کاهش صورت می‌گیرد، ولی به جای کاهش سدیم ، آب کاهیده می‌شود. بطور کلی ، هرگاه کاهش کاتیون ماده حل شده مشکل باشد، کاهش آب صورت می‌گیرد. اکسایش در آند صورت می‌گیرد و در برقکافت محلول آبی Na2SO4 ، آنیونها (2-SO4) که به طرف آند مهاجرت می‌کنند، به‌سختی اکسید می‌شوند:
    2SO42- → S2O42- + 2e
    بنابراین ترجیهاً اکسایش آب صورت می‌گیرد:
    2H2O → O2(g) + 4H+ + 4e
    یعنی در آند ، تولید گاز اکسیژن مشاهده می‌شود و محلول پیرامون این قطب ، اسیدی می‌شود. بطور کلی هرگاه اکسایش آنیون ماده حل شده مشکل باشد، آب در آند اکسید می‌شود. در الکترولیز محلول آبی NaCl ، در آند ، یونهای -Cl اکسید می‌شوند و گاز Cl2 آزاد می‌کنند و در کاتد ، احیای آب صورت می‌گیرد. این فرآیند ، منبع صنعتی برای گاز هیدروژن ، گاز کلر و سدیم هیدروکسید است:
    2H2O + 2Na+ + 2Cl- → H2(g) + 2OH- + 2Na+ + Cl2
    سلول های ولتایی

    سلولی که به‌عنوان منبع انرژی الکتریکی بکار می‌رود، یک سلول ولتایی یا یک سلول گالوانی نامیده می‌شود که از نام "آلساندرو ولتا" (1800) و "لوئیجی گالوانی" (1780) ، نخستین کسانی که تبدیل انرژی شیمیایی به انرژی الکتریکی را مورد آزمایش قرار دادند، گرفته شده است. واکنش بین فلز روی و یونهای مس II در یک محلول ، نمایانگر تغییری خود به خود است که در جریان آن ، الکترون منتقل می‌شود.
    (Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s
    مکانیسم دقیقی که بر اساس آن انتقال الکترون صورت گیرد، شناخته نشده است. ولی می‌دانیم که در آند ، فلز روی اکسید می‌شود و در کاتد ، یونهای Cu+2 احیا می شود و به ترتیب یونهای Zn+2 و فلز Cu حاصل می‌شود و الکترونها از الکترود روی به الکترود مس که با یک سیم به هم متصل شده‌اند، جاری می‌شوند، یعنی از آند به کاتد.
    Zn(s) → Zn2+(aq) + 2e
    (Cu2+(aq)+2e → Cu(s
    نیم سلول سمت چپ یا آند ، شامل الکترودی از فلز روی و محلول ZnSO4 و نیم سلول سمت راست یا کاتد ، شامل الکترودی از فلز مس در یک محلول CuSO4 است. این دو نیم سلول ، توسط یک دیواره متخلخل از هم جدا شده‌اند. این دیواره از اختلال مکانیکی محلولها ممانعت می‌کند، ولی یونها تحت تاثیر جریان الکتریسیته از آن عبور می‌کنند. این نوع سلول الکتریکی ، سلول دانیل نامیده می‌شود.
    نیروی محرکه الکتریکی

    اگر در یک سلول دانیل ، محلولهای 1M از ZnSO4 و 1M از CuSO4 بکار رفته باشد، آن سلول را با نماد گذاری زیر نشان می‌دهیم:
    (Zn(s) │ Zn2+(1M) │ Cu2+(1M) │ Cu(s
    که در آن خطوط کوتاه عمودی ، حدود فازها را نشان می‌دهند. بنابر قرارداد ، ماده تشکیل دهنده آند را اول و ماده تشکیل دهنده کاتد را در آخر می‌نویسیم و مواد دیگر را به ترتیبی که از طرف آند به کاتد با آنها برخورد می‌کنیم، میان آنها قرار می‌دهیم. جریان الکتریکی تولید شده در یک سلول ولتایی ، نتیجه نیروی محرکه الکتریکی (emf) سلول است که برحسب ولت اندازه گیری می‌شود.
    هر چه تمایل وقوع واکنش سلول بیشتر باشد، نیوری محرکه الکتریکی آن بیشتر خواهد بود. اما emf یک سلول معین به دما و غلظت موادی که در آن بکار رفته است، بستگی دارد. emf استاندارد، ˚ε ، مربوط به نیروی محرکه سلولی است که در آن تمام واکنش دهنده‌ها و محصولات واکنش در حالت استاندارد خود باشند. مقادیر ˚ε معمولا برای اندازه گیری‌هایی که در ˚25C به عمل آمده است، معین شده است.
    الکتروشیمی تعادل

    همانطور که انتظار داریم، تغییرات آنتروپی یونها با توانایی یونها در مرتب نمودن مولکولهای آب مجاور خود در محلول مرتبط است. یونهای کوچک با بار زیاد موجب القاء ساختار موضعی در آب مجاور می‌شوند و آنتروپی محلول در مقایسه با یونهای بزرگ و بار کم کاهش بیشتری می‌یابد. مقدار مطلق ، آنتروپی مولی جزئی قانون سوم پروتون در آب با پیشنهاد مدلی برای ساختار القاء شده توسط آن حدس زده شده و ومقدار مورد توافق است. مقدار منفی آب بدین معنی است که پروتون در حلال ایجاد نظم می نماید.
    قانون حد دبای - هوکل (DEBYE - HUCKEL THEORY)

    برد بلند و قدرت اثرات متقابل کولمبی بین یونها عامل اصلی دور شدن از حالت ایده‌آل در محلولهای یونی بوده و از تمام عوامل دیگر دخیل در غیر ایده آل مهمتر است. این نکته ، اساس نظریه دبای - هوکل در مورد یونی است که توسط پتردبای و اریک هوکل در 1923 ارئه گردید. چون یونها با بارهای مخالف همدیگر را جذب می‌کنند، کاتیونها و آنیونها بطور یکنواخت در محلول توزیع نمی‌شود: بلکه آنیونها بیشتر در نزدیکی کاتیونها یافت می‌شوند و بالعکس. کل محلول از نظر الکتریکی خنثی است، اما در نزدیکی هر یون معین یونهای مخالف اضافی ، یونهایی با بار مخالف وجود دارد.
    در هر محدوده زمانی بطور متوسط یونهای مخالف بیشتر از یونهای همنوع از کنار یک یون و در تمام جهات می‌گذرد. این گردمه (Hazi) کروی حول یک یون دارای باری مساوی ولی با علامت مخالف بار یون مرکزی بوده و جویونی نامیده می‌شود. انرژی و در نتیجه پتانسیل شیمیایی هر یون مرکزی در نتیجه اثر متقابل کولنی با جو یونی‌اش کاهش می‌یابد. این کاهش انرژی به صورت اختلاف بین تابع گیبس G و مقدار ایده آل آن ْG ظاهر می‌گردد و با مشخص می‌شود.
    این مدل ، منجر به این نتیجه می‌گردد که غلظتهای بسیار کم ضریب فعالیت با استفاده از قانونه حد دبای - هوکل محاسبه می‌گردد.


    که در آن Cْ 25 برای یک محلول آبی می‌باشد. (بطور کلی A به نفوذ پذیری نسبی و دما بستگی دارد) و I قدرت یونی محلول است.
    پیل های الکتروشیمیایی

    اکنون با اندازه گیریهای الکتریکی به بررسی واکنشها در محلول می‌پردازیم. دستگاه عمده برای این منظور پیل الکتروشیمیایی است. این پیل از دو الکترود تشکیل شده است، که عبارت است از هدایت کننده‌های فلزی که داخل الکترولیت قرار دارد. یک الکترولیت ، هدایت کننده یونی است (که می‌تواند محلول ، مایع یا جامد باشد). یک الکترود و الکترولیت آن یک بخش الکترودی را تشکیل می‌دهد. دو الکترود ممکن است در یک بخش باشد. چنانچه الکترولیتها مختلف باشد، دو بخش ممکن است در یک بخش باشد.
    چنانچه الکترولیتها مختلف باشد، دو بخش ممکن است توسط یک پل نمکی بهم متصل گردد. پل نمکی ، محلول الکترولیتی است که مدار الکتریکی را کامل نموده و پیل را قادر می‌سازد که کار کند. یک پیل الکتروشیمیایی که براثر انجام واکنش خودبخودی داخل آن تولید الکتریسیته نماید، پیل گالوانیک نامیده می‌شود. یک پیل الکتروشیمیایی که از الکتریسیته یک منبع خارجی برای انجام واکنش غیر خودبخودی در داخل آن استفاده شود، پیل الکترولیتی نامیده می‌شود.
    انواع پیل ها

    در ساده‌ترین نوع پیل هر دو الکترود در یک الکترولیت قرار می‌گیرند. در بعضی موارد لازم است که الکترودها در الکترولیتهای مختلف قرار گیرد، مانند پیل دانیل که یک جفت اکسایشی - کاهشی و دیگری می‌باشد. در یک پیل غلظتی الکترولیت دو قسمت الکترودی پیل از کلیه جهات بجز غلظت الکترولیتها کاملا یکسان است. در پیل غلظتی الکترود ، غلظت الکترودها متفاوت است، یا الکترودهای گازی می‌باشد که با فشارهای مختلف کار می‌کند و یا این که از ملغمه‌هایی (محلول در جیوه) با غلظتهای مختلف ساخته شده است.
    تصویر : پیل الکتروشیمیایی
    الکترود

    درسنجشهای الکتروشیمیایی ، الکترود یکی از مهمترین اجزای یک سلول الکتروشیمایی است. الکترود ، تیغه‌ای فلزی است که با الکترولیت در تماس بوده و باعث انتقال الکترون از مواد داخل سلول ( مواد عمل کننده ، یونیزه کننده و … ) به مدار خارجی و یا از مدار خارجی به مواد می‌شود. هر سلول الکتروشیمیایی دارای دو الکترود است.
    واکنشهای اکسایشی و کاهشی در سطح الکترودها صورت می‌گیرد. الکترودی که در آن ، عمل اکسایش صورت می‌گیرد، کاتد نام دارد. الکترودها را بوسیله رابطهای فلزی که عبور جریان الکتریکی را بین آنها ممکن می‌کنند، به هم وصل می‌کنند. وقتی الکترولیتهای ناحیه کاتدی و آندی از لحاظ نوع و یا غلظت ، تفاوت داشته باشند، باید آنها را بوسیله رابطی از الکترولیتها به یکدیگر مربوط کرد تا هم جریان کامل شود و هم از اختلاط الکترولیتها جلوگیری شود.
    معمولا پلهای نمکی برای این کار استفاده می‌شوند.
    معرفی الکترود بوسیله علائم شیمیایی

    برای معرفی الکترود بوسیله علائم شیمیایی ، علامت مواد سازنده آن‌را در یک خط پهلویی هم می‌نویسند. در این حالت بین الکترولیت و بقیه اجزا ، خط عمودی قرار می‌دهند. این خط ، نشانگر آن است که پتانسیلی بین دو قسمت برقرار می‌شود. اگر هر یک از دو بخش ، شامل چند فلز باشد، بین فازها ، کاما(،) قرار می‌دهند. برای حالت فیزیکی فازها علائم S برای جامد ، L برای مایع و g را برای گاز استفاده می‌کنند.
    برای معرفی سلول الکتروشیمیایی ، علامت الکترودها را طوری پهلوی هم می‌نویسند که فرمول الکترولیتها ، کنار هم قرار گیرند و بین الکترولیتها دو خط عمودی می‌گذارند که طبق قرارداد ، آند در سمت چپ نوشته می‌شود. بعنوان مثال معرفی یک سلول به شکل زیر نشان می دهد که

    • Zn: الکترود آندی در داخل محلول الکترولیت با غلظت y مولار قرار گرفته است.
    • Cu: الکترود کاتدی در داخل محلول الکترولیت با غلظت X مولار قرار گرفته است.این دو با هم یک سلول الکتروشیمیایی را تشکیل می‌دهند.
    پتانسیل مطلق الکترود

    وقتی دو فاز مختلف در کنار هم قرار گیرند، امکان برقراری پتانسیلی بین آنها وجود دارد. مثل وقتی که یک تیغه فلزی در داخل حلال ایده آل و یا محلول یونهای مربوطه‌اش قرارگیرد. بنابراین تبادلی بین یونهای فلز تیغه و یون فلز محلول برقرار می‌گردد و در نهایت انتقال به تعادل منجر می‌شود. اگر یونها از تیغه به محلول انتقال یابند، الکترونها در روی تیغه الکترود می‌مانند و بعد از زیاد شدن یون در حلال ، یونها به سطح تیغه بر می‌گردند و عمل به تعادل می‌رسد.
    تیغه ، دارای بار منفی و محلول ، دارای بار مثبت می‌شود و اختلاف پتانسیلی بین تیغه و محلول پدید می‌آید که آنرا پتانسیل مطلق الکترودی می‌نامند. در این فرایند ، مولکولهای حلال و میل قدرت نشر یونهای فلز به محیط ، موثر است.
    پتانسیل قراردادی الکترود

    تصویر : نوعی الکترود شاهد ، الکترود کالومل
    نیروی الکتروموتوری هر سلول برابر با اختلاف پتانسیل بین دو سر الکترودهای آن ، موقعی است که جریانی از مولد عبور نکند. این کمیت را به سهولت می‌توان با پتانسیومتر اندازه‌گیری کرد، ولی هیچگونه روش نظری یا عملی برای تعیین اختلاف بین دو الکترود - الکترولیت وجود ندارد و در نتیجه سهم پتانسیل هر یک از الکترودها در نیروی الکتروموتوری سلول نامعلوم است.
    در عمل برای اینکه بتوانند برای پتانسیل یک الکترود مقدار قابل بیانی داشته باشند، نیروی الکتروموتوری سلولی که از آن الکترودها و الکترود دیگری که با آن سلول بدون مایع تماسی تشکیل می‌دهد را اندازه می‌گیرند. الکترود دومی ، الکترود شاهد است و پتانسیل مشخص دارد و در نتیجه پتانسیل الکترود مورد نظر با محاسبه تعیین می‌شود.
    الکترود شاهد

    مبنای سنجش و تعیین پتانسیل الکترودها ، پتانسیل صفر ، پتانسیل الکترود استاندارد هیدروژن است. علاوه بر الکترود استاندارد هیدروژن ، الکترودهای دیگر هم بعنوان شاهد انتخاب می‌شوند که پتانسیل این الکترودها نسبت به پتانسیل الکترود استاندارد هیدروژن به سهولت تعیین می‌شود. الکترودهای کالومل ، نقره - نقره کلرید و کین هیدروژن از این نوع هستند.
    کاربرد الکترودها

    الکترودها معمولا برای سنجش یک پارامتر مثل PH متری ، پتانسیومتری ، اندازه‌گیری غلظت یک یون یا مولکول و … در شیمی تجزیه استفاده می‌شود و با توجه به پارامتر اندازه‌گیری الکترود مناسب استفاده می‌شود. الکترودها در انواع فلزی ، غیرفلزی ، شیشه‌ای ، بلوری و … به بازار عرضه می‌شوند و هر کدام کاربرد مخصوص خود را دارند.
    خوردگی فلزات و حفاظت کاتدی
    خوردگی فلزات
    خوردگی ، ( Corrosion ) ، اثر تخریبی محیط برفلزات و الیاژها می‌‌باشد. خوردگی ، پدیده‌ای خودبه‌خودی است و همه مردم در زندگی روزمره خود ، از بدو پیدایش فلزات با آن روبرو هستند. در اثر پدیده خودبه‌خودی ، فلز از درجه اکسیداسیون صفر تبدیل به گونه‌ای با درجه ‌اکسیداسیون بالا می‌‌شود.
    M ------> M+n + ne
    در واقع واکنش اصلی در انهدام فلزات ، عبارت از اکسیداسیون فلز است.
    تخریب فلزات با عوامل غیر خوردگی

    فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب می‌‌شوند که تحت عنوان خوردگی مورد نظر ما نیست.
    فرایند خودبه‌خودی و فرایند غیرخودبه‌خودی

    خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد. البته M+n می‌‌تواند به حالتهای مختلف گونه‌های فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ می‌‌زند که یک نوع خوردگی و پدیده‌ای خودبه‌خودی است. انواع مواد هیدروکسیدی و اکسیدی نیز می‌‌توانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیده‌ای خودبه‌خودی است، اشکال مختلف آن ظاهر می‌‌شود.
    بندرت می‌‌توان فلز را بصورت فلزی و عنصری در محیط پیدا کرد و اغلب بصورت ترکیب در کانیهاو بصورت کلریدها و سولفیدها و غیره یافت می‌‌شوند و ما آنها را بازیابی می‌‌کنیم. به عبارت دیگر ، با استفاده ‌از روشهای مختلف ، فلزات را از آن ترکیبات خارج می‌‌کنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج می‌‌کنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به ‌اکسید آلومینیوم می‌‌کنند و سپس با روشهای الکترولیز می‌‌توانند آن را احیا کنند.
    برای تمام این روشها ، نیاز به صرف انرژی است که یک روش و فرایند غیرخودبه‌خودی است و یک فرایند غیرخودبه‌خودی هزینه و مواد ویژه‌ای نیاز دارد. از طرف دیگر ، هر فرایند غیر خودبه‌خودی درصدد است که به حالت اولیه خود بازگردد، چرا که بازگشت به حالت اولیه یک مسیر خودبه‌خودی است. پس فلزات استخراج شده میل دارند به ذات اصلی خود باز گردند.
    در جامعه منابع فلزات محدود است و مسیر برگشت طوری نیست که دوباره آنها را بازگرداند. وقتی فلزی را در اسید حل می‌‌کنیم و یا در و پنجره دچار خوردگی می‌‌شوند، دیگر قابل بازیابی نیستند. پس خوردگی یک پدیده مضر و ضربه زننده به ‌اقتصاد است.
    جنبه‌های اقتصادی فرایند خوردگی

    برآوردی که در مورد ضررهای خوردگی انجام گرفته، نشان می‌‌دهد سالانه هزینه تحمیل شده از سوی خوردگی ، بالغ بر 5 میلیارد دلار است. بیشترین ضررهای خوردگی ، هزینه‌هایی است که برای جلوگیری از خوردگی تحمیل می‌‌شود.
    پوششهای رنگ ها و جلاها

    ساده‌ترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده ‌از رنگها بصورت آستر و رویه ، می‌‌توان ارتباط فلزات را با محیط تا اندازه‌ای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای ساده‌ای می‌‌توان رنگها را بروی فلزات ثابت کرد که می‌‌توان روش پاششی را نام برد. به کمک روشهای رنگ‌دهی ، می‌‌توان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.
    آخرین پدیده در صنایع رنگسازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ می‌‌دهند و به ‌این ترتیب می‌توان از پراکندگی و تلف شدن رنگ جلوگیری کرد.
    پوشش های فسفاتی و کروماتی

    این پوششها که پوششهای تبدیلی نامیده می‌‌شوند، پوششهایی هستند که ‌از خود فلز ایجاد می‌‌شوند. فسفاتها و کروماتها نامحلول‌اند. با استفاده ‌از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز می‌‌کنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیط‌های خنثی می‌‌توانند کارایی داشته باشند.
    این پوششها بیشتر به ‌این دلیل فراهم می‌‌شوند که ‌از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی می‌‌توانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکم‌تر می‌‌سازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمی‌‌تواند از خوردگی جلوگیری کند.
    پوشش های اکسید فلزات

    اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری می‌‌کند. بعنوان مثال ، می‌‌توان تحت عوامل کنترل شده ، لایه‌ای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز می‌‌چسبد و باعث می‌‌شود که ‌اتمسفر به‌ آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگ‌پذیر است و می‌‌توان با الکترولیز و غوطه‌وری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفره‌های شش وجهی است که با الکترولیز ، رنگ در این حفره‌ها قرار می‌‌گیرد.
    همچنین با پدیده ‌الکترولیز ،آهن را به اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل می‌‌کنند که مقاوم در برابر خوردگی است که به آن "سیاه‌کاری آهن یا فولاد" می‌‌گویند که در قطعات یدکی ماشین دیده می‌‌شود.
    پوششهای گالوانیزه

    گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام می‌‌گیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعه‌ای که می‌‌خواهیم گالوانیزه کنیم،کاتد الکترولیز را تشکیل می‌‌دهد و فلز روی در آند قرار می‌‌گیرد. یکی دیگر از روشهای گالوانیزه ، استفاده ‌از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.
    در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار می‌‌دهند و با استفاده ‌از غوطه‌ور سازی فلز در روی مذاب ، لایه‌ای از روی در سطح فلز تشکیل می‌‌شود که به ‌این پدیده ، غوطه‌وری داغ (Hot dip galvanizing) می‌گویند. لوله‌های گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و ... مورد استفاده قرار می‌‌گیرند.
    پوششهای قلع

    قلع از فلزاتی است که ذاتا براحتی اکسید می‌‌شود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم می‌‌شود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و ... بخوبی پایداری می‌‌کند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده می‌‌شود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی می‌‌باشد که بر روی ظروف آهنی این پوششها را قرار می‌‌دهند.
    پوششهای کادمیم

    این پوششها بر روی فولاد از طریق آبگیری انجام می‌‌گیرد. معمولا پیچ و مهره‌های فولادی با این فلز ، روکش داده می‌‌شوند.
    فولاد زنگ‌نزن

    این نوع فولاد ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیر آلات مورد استفاده قرار می‌گیرد. این نوع فولاد ، آلیاژ فولاد با کروم می‌‌باشد و گاهی نیکل نیز به ‌این آلیاژ اضافه می‌‌شود.
    1-حفاظت كاتدی خطوط لوله

    اصول خوردگی براساس خواص فعل و انفعالات الكتروشیمیایی است كه در آند تولید الكترون و در كاتد مصرف الكترون صورت می پذیرد . واكنش های الكترو شیمیایی انحلال فلز و آزاد شدن گاز هیدروژن ، بر طبق معادلات زیر است :
    M → Mn+ + ne
    2H + +2e → H2
    در پروسه خوردگی لوله مدفون درخاك ، نقاط آندی و كاتدی در هر حال موجود هستند و با انتقال جریان الكتریسیته از نواحی آندی از فلز به محیط اطراف خوردگی رخ می دهد و در نقاط كاتدی كه جریان از محل اطراف به فلز می رسد خوردگی صورت نمی گیرد . به همین دلیل فلز را می توان به طور جزئی بوسیله استفاده از پوشش ها حفاظت نمود. اگر پوشش ها دائمی بودند و هنگام نصب و یا كار آسیب نمی دیدند لوله های فلزی هرگز خورده نمی شدند . پیدایش عیوب در لایه های محافظ یا وجود سوراخ ها، حتی اگر اتفاقی باشد ما را ملزم می كند كه حفاظت نوع دومی را هم برای فلزات مدفون در خاك بكار بریم . روش عمومی استفاده از حفاظت كاتدی است.
    در این روش با وارد شدن یك پتانسیل كاتدی ، قطعه مهندسی به یك كاتد ( قطب منفی) تبدیل می گردد؛ در حقیقت جریان از طرف محیط به تمام سطح لوله می رسد پس در حقیقت دیگر خوردگی نخواهیم داشت و لوله محافظت می گردد.
    حفاظت كاتدی را میتوان به تنهایی هم بكار برد ولی به مقدار جریان زیادی نیاز است. بنابراین بهترین روش آن است كه از یك لایه محافظ مناسب استفاده كرد و بعدا بوسیله حفاظت كاتدی آنرا تقویت نمود.
    حفاظت كاتدی خطوط لوله Ι
    همانگونه كه در ابتدا مطرح شد اصول خوردگی براساس خواص فعل و انفعالات الكتروشیمیایی است كه در آند تولید الكترون و در كاتد مصرف الكترون صورت می پذیرد . واكنش های الكترو شیمیایی انحلال فلز و آزاد شدن گاز هیدروژن ، بر طبق معادلات زیر است :
    M → Mn+ + ne
    2H + +2e → H2
    در پروسه خوردگی لوله مدفون درخاك ، نقاط آندی و كاتدی در هر حال موجود هستند و با انتقال جریان الكتریسیته از نواحی آندی از فلز به محیط اطراف خوردگی رخ می دهد و در نقاط كاتدی كه جریان از محل اطراف به فلز می رسد خوردگی صورت نمی گیرد . به همین دلیل فلز را می توان به طور جزئی بوسیله استفاده از پوشش ها حفاظت نمود. اگر پوشش ها دائمی بودند و هنگام نصب و یا كار آسیب نمی دیدند لوله های فلزی هرگز خورده نمی شدند . پیدایش عیوب در لایه های محافظ یا وجود سوراخ ها، حتی اگر اتفاقی باشد ما را ملزم می كند كه حفاظت نوع دومی را هم برای فلزات مدفون در خاك بكار بریم . روش عمومی استفاده از حفاظت كاتدی است.
    در این روش با وارد شدن یك پتانسیل كاتدی ، قطعه مهندسی به یك كاتد ( قطب منفی) تبدیل می گردد؛ در حقیقت جریان از طرف محیط به تمام سطح لوله می رسد پس در حقیقت دیگر خوردگی نخواهیم داشت و لوله محافظت می گردد.
    حفاظت كاتدی را میتوان به تنهایی هم بكار برد ولی به مقدار جریان زیادی نیاز است. بنابراین بهترین روش آن است كه از یك لایه محافظ مناسب استفاده كرد و بعدا بوسیله حفاظت كاتدی آنرا تقویت نمود.
    حفاظت كاتدی به دو شیوه اعمال می گردد:
    1- جریان اعمالی Impressed current
    2- آند فدا شونده sacrificial anode
    حفاظت کاتدی بوسیله جریان اعمالی:
    حفاظت از این طریق در حقیقت ساخت و کنترل یک سلول خوردگی بزرگ است . در این سلول پایانه منفی جریان مستقیم به خط لوله و پایانه مثبت به یک رسانای مصرف شدنی دفن شده وصل می شود و این رسانا آند نامیده می شود. جریان مستقیم معمولا از طریق یک یکسو کننده به لوله وارد می گردد و در حقیقت یک مدار الکتریکی بوسیله عبور جریان توسط خاک از آند به خط لوله به وجود می آید. ( شكل 1)
    در حقیقت سرمایه گذاری برای تاسیسات حفاظت کاتدی ، بخش کوچکی از هزینه کل تجهیزات است برخلاف حفاظت بوسیله پوشش ها ، تداوم هزینه ها برای تجهزات و کنترل وجود دارد ؛ در حقیقت این بحث شامل اندازه گیری و برآورد تجهیزات ، طراحی و نصب آنها ، اندازه گیری و تفسیر نتایج بدست آمده و سپس تعمیر و نگه داری است.
    شكل 1 - نمایی شماتیك از سیستم حفاظت كاتدی
    فاکتو رهای مورد نظر جهت طراحی سیستم حفاظت کاتدی:

    عواملی که باید مد نظر قرار گیرند عبارت اند از:
    1- اندازه پتانسیل : که با توجه و با استفاده از دیاگرام ایوانز آن چنان اختیار می شود که فلزات متفاوت در ناحیه کاتدی حفاظت می گردند. ( شكل 2)
    2- جریان مدار: شدت جریان ( آمپر) مورد نیاز جهت رسیدن به پتانسیل حفاظت کننده می بایستی محاسبه شود.
    3- فاصله بسترهای آندی : هر قدر که فاصله آندها از قطعه بیشتر باشد جریان بیشتری در مدار می بایست تزریق گردد تا حفاظت کامل تری صورت پذیرد.
    نزدیکی بیش از حد آند به قطعه از رسیدن جریان به تمامی سطح ( بخصوص طرف پشت قطعه ) جلوگیری خواهد نمود.
    4-احتمال بکار گرفته شدن پوشش های حفاظتی و تاثیر آنها بر طراحی سیستم حفاظت کاتدی
    5- اندازه های قطعه مهندسی ، طول قطر، طول یا عرض جهت محاسبه سطح و در نتیجه اندازه مقاومت الکتریکی آن
    6- نوع و جنس خاک ، به لحاظ خواص شیمیایی و تعیین مقاومت آن اهمیت خاص دارند.
    7- احتمال وجود جریان های ناخواسته ( سرگردان) جریان های القائی که بنا بر عبور برق فشار قوی از نزدیکی قطعه مهندسی و یا وجود ترانس ها و دیگر دستگاه ها ایجاد می گردد.
    شكل 2- دیاگرام ایوانز
    ویرایش توسط ghasem motamedi : 31st January 2010 در ساعت 01:58 AM

  16. 3 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  17. #9
    دوست آشنا
    رشته تحصیلی
    مهندسی مواد
    نوشته ها
    904
    ارسال تشکر
    215
    دریافت تشکر: 678
    قدرت امتیاز دهی
    140
    Array

    پیش فرض خوردگی در مهندسی مواد

    خوردگی ( Corrosion )
    خوردگی اصطلاحی است که به فساد فلزات از طریق ترکیب فلز با اکسیژن وسایر مواد شیمیایی انجام می شود.
    زنگ زدن ( Rusting )
    زنگ زدن فقط در مورد اکسید شدن آهن وآلیاژهای آهنی در هوای خشک یا مرطوب به کار می رود که محصول خوردگی از جنس هیدرات فریک یا اکسید فریک است .
    اکسید شدن ساده فلزات سبک
    این فلزات شامل فلزات قلیایی و قلیایی خاکی هستند که وقتی اکسید شوند حجم قشر اکسید تشکیل شده متخلخل بوده و مانعی جهت نفوذ اکسیژن به داخل قشر اکسید نیست و اکسید خاصیت چسبندگی به فلز ندارد. به طور خاص سدیم وپتاسیم در حرارت های عادی و متعارفی میل ترکیبی شدیدی با اکسیژن دارند ولی در درجات حرارت خیلی کم اکسید شدن به تاخیر می افتد و اکسید تشکیل شده در این حالت خاصیت چسبندگی دارد.
    آلومینیم و آلیاژهای آن
    آلومینیوم ، فلزی نرم و سبک ، اما قوی است، با ظاهری نقره‌ای - خاکستری٬ مات و لایه نازک اکسیداسیون که در اثر برخورد با هوا در سطح آن تشکیل می‌شود، از زنگ خوردگی بیشتر جلوگیری می‌کند. وزن آلومینیوم تقریبأ یک سوم فولاد یا مس است . چکش خوار ، انعطاف پذیر و به راحتی خم می‌شود. همچنین بسیار بادَوام و مقاوم در برابر زنگ خوردگی است. بعلاوه ، این عنصر غیر مغناطیسی ، بدون جرقه ، دومین فلز چکش خوار و ششمین فلز انعطاف‌پذیر است.

    خواص فیزیکی
    حالت ماده
    جامد
    نقطه ذوب
    933.47 K (1220.58 °F)
    نقطه جوش
    2792 K (4566 °F)
    گرمای تبخیر
    293.4 kJ/mol
    گرمای هم جوشی
    10.79 kJ/mol
    فشار بخار
    2.42 E-06 Pa at __ K
    سرعت صوت
    5100 m/s at 933 K

    خواص اتمی
    وزن اتمی
    26.981538 amu
    شعاع اتمی (calc.)
    125 (118) pm
    شعاع کووالانسی
    118 pm
    شعاع وندروالس
    اطلاعات موجود نیست
    ساختار الکترونی
    Ne]3 s2 3p1]
    -e بازای هر سطح انرژی
    2, 8, 3
    درجه اکسیداسیون اکسید
    3 (آمفوتریک)
    ساختار کریستالی
    مکعبی face centered

    آلومینیوم از جمله جدیدترین مصالح ساختمانی است که در آغاز قرن 20 یک فلز نسبتا کمیاب بود و این روزها از متداولترین فلزات است که به صورت آلیاژی و غیر آلیاژی به کار می رود .
    ویژگی های عمومی خوردگی :
    آلومینیوم یک فلز پست ( فعال ) است که با محیط اطراف میل ترکیبی شدیدی دارد . یعنی سطح آلومینیوم در معرض هوا به سرعت از یک لایه نازک اکسید آلومینیوم حدود 0.01 میکرومتر پوشیده می شود که فلز را از حمله بعدی خوردگی محافظت می کند . معادله زیر به معادله لگاریتمی معکوس معروف است که در مورد خوردگی و اکسید شدن فلزاتی نظیر آلومینیوم به کار می رود :
    1/y = 1/y0 – k9( Ln[a(t-t0)+1])

    y0 : ضخامت قشر اکسید در بدو آزمایش
    t0 : زمان آزمایش در بدو شروع
    k9 : ثابت
    این معادله در مورد اکسید شدن آلومینیوم د ردرجه حرارت معمولی و اکسیژن خشک صادق است . هم چنین د راین فلز و در فلز زیرکونیوم رشد فیلم به روش اکسید شدن آنودیک از این معادله پیروی می کند . وقتی آلومینیوم د رمجاورت اکسیژن خالص و خشک قرار می گیرد بین اکسیژن وآلومینیوم یک نوع پیل الکتریکی موضعی تشکیل می شود که سبب رشد فیلم می شود .
    خوردگی یکنواخت :
    خوردگی یکنواخت فلز آلومینیوم در فضای باز معمولا قابل اغماض است . محلول های دارای PH خارج از دامنه اثر ناپذیری در نمودار پتانسیل PH سبب خوردگی مواد ساخته شده از آلومینیوم می شوند. ملاط تازه تهیه شده هم قلیایی است ولذا خورنده آلومینیوم است از این رو برای اجتناب از گسترش مناطق حک شده در سطح فلز باید مراقبت شود که از پخش شدن ملاط جلوگیری شود . سطوح آلومینیومی که در تماس با بتون تازه هستند حتما در آغاز زدوده می شوند ولی به زودی با تشکیل اندود آلومینات کلسیم برروی آن ها از خوردگی بعدی جلوگیری می شود.



    تشکیل حفره :
    در اتمسفرهای باز آلوده ٬ حفره های کوچکی تشکیل می شوند که با چشم قابل رویت نیستند . روی این حفره ها جرم های کوچک محصولات خوردگی معمولا اکسید آلومینیوم و هیدروکسید آلومینیوم هستند ٬ تشکیل می شوند . حفره های کم عمق معمولا اثر چندانی بر استحکام مکانیکی ساختمان ها ندارند ٬ با این وجود جلای درخشنده فلز به تدریج از بین می رود و به جای آن اندود خاکستری – زنگاری محصولات خوردگی ظاهر می شود. اگر اتمسفر حاوی دوده فراوان باشد دوده توسط محصولات خوردگی جذب و رنگ زنگاری تیره ایجاد می شود .
    اگر آلومینیوم به طور دائم در معرض آب قرار گیرد حفره دار شدن آن خیلی جدی خواهد بود . به خصوص اگر آب راکد باشد حضور اکسیژن وکلرید و یا یون های دیگر هالید ها تعیین کننده وجود حمله و شدت حمله خواهد بود . اگر یون های HCO3 و Cu2+وجود داشته باشند خطر حفره دار بودن بیشتر خواهد بود البته مشروط بر این که پتانسیل تشکیل حفره بالا رود . بیرون حفره واکنش کاتدی انجام می گیرد که کنترل کننده سرعت تشکیل حفره است .

    خوردگی دو فلزی :
    چون آلومینیوم یک فلز پست است خطر خوردگی دو فلزی در تماس مستقیم آن با یک فلز نجیب تر مثل فولاد وجود دارد . ولی شرط وقوع حمله ٬ حضور یک الکترولیت در نقطه تماس است . لذا خوردگی دو فلزی در فضای بسته خشک به وجود نمی آید و خطر حمله خوردگی دو فلزی در اتمسفر باز وجود دارد . البته این نوع خوردگی روی سطحی که با دوده آلوده شده باشد هم پیش می آید .
    خوردگی شکافی:
    نوعی خوردگی شکافی در آلومینیوم در حضور آب پیش می آید نتیجه این خوردگی شکافی می تواند تشکیل اکسید آلومینیوم باشد که به صورت لکه های آب سبب بی رنگ شدن سطح می شود . زدودن لکه هاب آب دشوارو احتمالا غیر ممکن است .
    خوردگی لایه ای :
    خوردگی لایه ای که به خوردگی پوسته شدن هم معروف است بیشتر به موادی که غلتک می خورند یا روزن ران می شوند ازنوع AlCuMg و AlZnMg محدود می شود . مکان حمله د رلایه های موازی نازک در جهت حرکت به جلو بوده است و سبب می شود که رویه های فلزی که مورد حمله قرار گرفته اند از هم جدا شده و یا تاول هایی بر سطح فلز ایجاد شود . خوردگی لایه ای با قرار گرفتن فلز در آب راکد و یا اتمسفر در یایی هم به وجود می آید و مقاومت در برابر خوردگی لایه ای هم از روی عملیات پیر سازی تعیین می شود .
    یكی دیگر از خواص مشخصه آلیاژهای آلومینیوم مقاومت در مقابل خوردگی است. آلومینیوم خالص وقتی كه در هوا قرار گیرد بلافاصله با یك لایه چسبنده اكسید آلومینیومی پوشیده می‌شود، این لایه پوششی، مانع خوردگی می‌گردد. اگر در اثر سائیدگی این لایه كنده شود بلافاصله دوباره تشكیل می‌گردد. ضخامت این لایه نازك طبیعی در حدود 025/0 میكرون (یك میكرون = یك هزارم میلی‌متر) است، با این وجود بقدری محكم است كه مانع موثری در مقابل اغلب مواد خورنده محسوب می‌گردد.
    البته برخی از آلیاژهای خاص آلومینیوم نسبت به دیگران مقاومتر است. برای مثال گروه آلیاژهای Al-mg مخصوصاً در مقابل هوا و آب دریا مقاوم است. از طرف دیگر آلیاژهای آلومینیوم حاوی مس یا روی از نظر مقاومت خوردگی ضعیف‌تر و از نظر استحكام مكانیكی قویتر می‌باشد.
    روش های زیر در جلوگیری از خوردگی به کار می رود :

    حفاظت کاتد ی:
    مصالح آلومینیوم غوطه ور در آب را می توان به روش حفاظت کاتدی در مقابل تشکیل حفره حفظ کرد. برای این کار پتانسیل الکترودی را تا مقدار زیر پتانسیل تشکیل حفره جسم در محیط مورد نظر پایین می آورند٬ با وجود این گاز هیدروژن می تواند در کاتد تشکیل شود که نتیجه آن بالا رفتن مقدار PH است . هرگاه PH بسیار بالا رود آلومینیوم احتمالا مورد حمله قرار می گیرد لذا از حفاظت اضافی آن باید اجتناب کرد .
    آندی کردن:
    لایه اکسید تشکیل شده در سطح آلومینیوم در معرض هوا از خصلت حفاظتی خوبی برخوردار است اما این لایه اکسید را می توان با برقکافت ضخیم تر کرد . این کار را آندی کردن می گویند و اکسیدی که به این ترتیب تشکیل می شود اندود اکسید آندی نامیده می شود . با آندی کردن فلز مقاومت در برابر خوردگی افزایش می یابد ضمن اینکه سطح با قرار گرفتن در فضای باز ظاهر جدیدی پیدا خواهد کرد . در موقع آندی کردن آلومینیوم شی فلزی اند پیل الکترولیتی را تشکیل می دهد . اندود اکسید آندی که طی برقکافت ایجاد می شود شامل یک لایه فشرده به صورت سد در نزدیک سطح فلز و لایه دیگری با منافذ ریز بر روی آن است .
    رنگ کاری :
    مصالح آلومینیومی را برای فضای باز مثل ساختمان ها نیاز به رنگ مقاوم به خوردگی ندارند . خوردگی اتمسفری ان قدر شدید نیست که بر مقاومت ساختمان اثر گذارد . در هر حال رنگ کردن آلومینیوم بیشتر به منظور زیبا سازی انجام می شود.
    اگر مقاومت طبیعی آلومینیوم برای بعضی از محیط‌ها كافی نباشد در آن صورت روش هایی وجود دارد كه بتوان مقاومت آن را افزایش داد. برخی از این روشها عبارتند از: پوشش دادن با آلومینیم ٬ آندایزه کردن یا آبکاری ٬ پوشش سخت دادن ومحافظت کاتدی .
    پوشش آلومینیومی دادن Alcladding:
    بطور كلی آلیاژهای آلومینیوم با استحكام زیاد از نظر خوردگی كم مقاومترین آنها محسوب می‌گردند. این مطلب بخصوص در مورد آلیاژهای حاوی درصدهای زیاد مس یا روی صادق است. از طرف دیگر مقاومت به خوردگی آلومینیوم خالص بسیار زیاد است. پوشش آلومینیومی دادن یكی از روش های افزایش مقاومت خوردگی به یك آلیاژ با استحكام زیاد است. در این فرآیند یك لایه آلومینیوم خالص به سطح آلیاژ مورد نظر متصل شده و در نتیجه در مجموعه خواص مورد نظر حاصل می‌شود. این روش مخصوصاً در محصولات ورقه‌ای مناسب است.
    آندایزه كردن (آبكاری) Anodizing:
    در این روش از مقاومت زیاد در مقابل خوردگی لایه پوششی كه بلافاصله بر روی سطح آلومینیوم تازه بریده شده تشكیل می‌گردد استفاده می‌شود. همانگونه كه قبلاً ذكر گردید این لایه عامل مقاومت به خوردگی طبیعی این فلز است. آندایزه كردن در واقع یك نوع ضخیم كردن لایه اكسیدی به ضخامت تا چندین هزار برابر ضخامت لایه اكسید طبیعی است. نتیجه عمل، لایه‌ای است سخت با ضخامت حدود 5/25 میكرون بر تمام سطح آلومینیوم كه علاوه بر مقاومت به خوردگی در مقابل سایش نیز استحكام كافی دارد. آندایزه كردن یك روش الكتریكی است كه انواع مختلف آن اساساً از نظر محلولی كه فلز در آن مورد عمل قرار می‌گیرد و ضخامت لایه اكسیدی حاصل، فرق می‌نماید. از این طریق پوشش دادن علاوه بر حفاظت سطحی گاهی به منظور تزئینی نیز استفاده می‌گردد اگر فلز آندایزه شده را با انواع رنگهای مختلف پوشش دهند رنگ حاصل تقریباً بصورت قسمتی از اكسید سطحی بدست می‌آید.
    تاول زدن سطح قطعات آلومینیمی در هنگام عملیات حرارتی :
    عواقب نفوذ هیدروژن بداخل مذاب از طریق واکنش سطحی مذاب با بخار آب در ریخته گری کاملا مشخص است. یک چنین واکنشی ممکن است در خلال عملیات حرارتی انحلال نیز با آلومینیوم جامد انجام گیرد که منجر به جذب اتم های هیدروژن شود. این اتم ها می توانند در حفره های داخلی با هم ترکیب شده و تشکیل مجموعه های گاز ملکولی دهند. در اثر حرارت دادن ماده فشار گازی موضعی ایجاد می شود و با توجه به اینکه در این دماهای بالا فلز دارای پلاستیسیته نسبتا زیادی است این امر منجر به تشکیل تاولهای غیر قابل جبران سطحی می گردد.
    تاولهای ایجاد شده بر سطح قطعات آلیاژ آلومینیومی عملیات حرارتی شده در محیط مرطوب حفره های داخلی که این تاولها در آنجا ایجاد می شوند از تخلخل های اولیه شمش که از بین نرفته اند ترکیبات بین فلزی که در خلال تغییر شکل ترک خورده اند و احتمالا خوشه های مکانهای خالی اتمی در شبکه که ممکن است در اثر حل شدن رسوبات یا ترکیبات حاصل شده باشند ناشی می شوند. در این گونه موارد وجود تاولی که باعث خرابی ظاهر سطحی قطعه می گردد ممکن است تاثیر برروی خواص مکانیکی قطعات بگذارد. در هر حال بیش از حد گرم کردن قطعه منجر به تاول زدن می گردد زیرا هیدروژن به آسانی می تواند توسط مناطق ذوب شده جذب گردد که در این صورت مساله جدی تر می شود و باعث مردود شدن قطعه کار می گردد.
    از آنجائی که حذف کامل حفره های داخلی در محصولات کار شده مشکل است ٬ لازم است مقدار بخار آب موجود در محیط کوره را به حداقل رسانید.اگر این امر امکان پذیر نباشد در آن صورت ورود یک نمک فلورایدی بداخل کوره در خلال عملیات حرارتی قطعات حساس می تواند از طریق کاهش واکنش سطحی قطعه با بخار آب مفید واقع شود.

  18. 2 کاربر از پست مفید ghasem motamedi سپاس کرده اند .


  19. #10
    کاربر جدید
    رشته تحصیلی
    متالورژي
    نوشته ها
    1
    ارسال تشکر
    0
    سپاس شده 1 در 1 پست
    قدرت امتیاز دهی
    0
    Array

    پیش فرض پاسخ : خوردگی در مهندسی مواد

    روشهاي جلوگيري از خوردگي لوله هاي گالوانيزه چيست

  20. کاربرانی که از پست مفید سعيده اسدي كيا سپاس کرده اند.


صفحه 1 از 2 12 آخرینآخرین

اطلاعات موضوع

کاربرانی که در حال مشاهده این موضوع هستند

در حال حاضر 1 کاربر در حال مشاهده این موضوع است. (0 کاربران و 1 مهمان ها)

موضوعات مشابه

  1. آموزشی: انتخاب و کاربرد ماشینهای پس از برداشت
    توسط morteza.zangeneh در انجمن ماشینهای کشاورزی
    پاسخ ها: 0
    آخرين نوشته: 10th December 2008, 09:27 PM
  2. تصفيه آب در پالايشگاه
    توسط faridbensaeed در انجمن نفت ، گاز ، طراحی فرایند و مخازن هیدروکربوری
    پاسخ ها: 0
    آخرين نوشته: 23rd November 2008, 09:52 AM
  3. پاسخ ها: 0
    آخرين نوشته: 4th November 2008, 11:14 PM

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •