PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : جزئیات اجرایی ساختمان های بتنی



ریپورتر
27th March 2010, 03:00 PM
بتن

بتن و فولاد دو نوع مصالحی هستند که امروزه بیشتر از سایر مصالح در ساختمان انواع بناها از قبیل ساختمان پلها،ساختمان سدها، ساختمان متروها،ساختمان فرودگاه ها و ساختمان بناهای مسکونی و اداری و غیره به کار برده می شوند.و شاید به جرأت می توان گفت که بدون این دو پیشرفت جوامع بشری به شکل کنونی میسر نبود.با توجه به اهدافی که از ساخت یک بنا دنبال می شود،بتن و فولاد به تنهایی و یا به صورت مکمل کار برد پیدا می کنند. فولاد به لحاظ اینکه در شرایط به دقت کنترل شده ای تولید می شود و مشخصات و خواص آن از قبیل تعیین و با آزمایشات متعددی کنترل می شود،دارای کاربری آسانتر از بتن است. اما بتن در یک شرایط کاملا متفاوتی با توجه به پارامتر های مختلف از قبیل نوع سیمان،نوع مصالح و شرایط آب و هوایی تولید و استفاده می شود و عدم اطلاع کافی از خواص مواد تشکیل دهنده بتن و نحوه تولید و کاربرد آن می تواند ضایعات جبران ناپذیری را به دنبال داشته باشد.
با توجه به پیشرفت علم و تکنولوژی در قرن اخیر، علم شناخت انواع بتن و خواص آنها نیز توسعه قابل ملاحظه ای داشته است، به نحوی که امروزه انواع مختلف بتن با مصالح مختلف تولید و استفاده می شود و هر یک خواص و کاربری مخصوص به خود را داراست.هم اکنون انواع مختلفی از سیمانها که حاوی پوزولانها ،خاکستر بادی،سرباره کوره های آهن گدازی،سولفورها،پلیمرها،ال یافهای مختلف،و افزودنیهای متفاوتی هستند،تولید می شد. ضمن اینکه تولید انواع بتن نیز با استفاده از حرارت،بخار،اتوکلاو،تخلیه هوا،فشار هیدرولیکی،ویبره و قالب انجام می گیرد.
بتن به طور کلی محصولی است که از اختلاط آب با سیمان آبی و سنگدانه های مختلف در اثر واکنش آب با سیمان در شرایط محیطی خاصی به دست می آیدو دارای ویژگیهای خاص است.
اولین سؤالی که پیش می آید این است که چه رابطه ای بین تشکیل دهنده بتن باید وجود داشته باشد تا یک بتن خوب به دست آید و اصولا بتن خوب دارای چه شرایط و ویژگیهایی است. رابطه بین اجزاء تشکیل دهنده بتن،در خواص فیزیکی و شیمیایی و همچنین نسبت اختلاط آنها با هم است.چه اگر مصالح یا آب و سیمانی با خواصی مناسب بتن با هم مخلوط گردند و در شرایط و محیطی مناسب به عمل آیند،یقینا بتن خوبی حاصل می شودو اصولا بتن خوب، بتنی است که دارای مقاومت فشاری دلخواه و رضایت بخشی باشد. رسیدن به یک مقاومت فشاری دلخواه و رضایت بخش بدین معناست که سایر خواص بتن مانند مقاومت کششی، وزن مخصوص، مقاومت دربرابر سایش، نفوذ ناپذیری، دوام، مقاومت دربرابر سولفاتها و ... نیز همسو با مقاومت فشاری، بهبود یافته و متناسب می شوند.
اگر چه شناخت مصالح مورد مصرف در ساخت بتن و همچنین خواص مختلف بتن کار آسانی نیست اما سعی می شود به خواص عمومی مصالح و همچنین بتن پرداخته شود.
بتن اینک با گذشت بیش از 170 سال از پیدایش سیمان پرتلند به صورت کنونی توسط یک بنّای لیدزی، دستخوش تحولات و پیشرفتهای شگرفی شده است.در دسترس بودن مصالح آن، دوام نسبتاً زیاد و نیاز به ساخت و سازهای فراوان سازه های بتنی چون ساختمان ها، پل ها، تونل ها، سدها، اسکله ها، راه ها و سایر سازه های خاص دیگر، این ماده را بسیار پر مصرف نموده است.
اینک حدود سه تا چهار دهه است که کاربرد این ماده ارزشمند در شرایط ویژه و خاص مورد توجه کاربران آن گشته است. اکنون کاملاً مشخص شده است که توجه به مقاومت تنها به عنوان یک معیار برای طرح بتن برای محیطهای مختلف و کاربریهای متفاوت نمی تواند جوابگوی مشکلاتی باشد که در درازمدت در سازه های بتنی ایجاد می گردد. چند سالی است که مسأله پایایی و دوام بتن در محیط های مختلف و به ویژه خورنده برای بتن و بتن مسلح مورد توجه خاص قرار گرفته است.مشاهده خرابی هایی با عوامل فیزیکی و شیمیایی در بتن ها در اکثر نقاط جهان و با شدتی بیشتر در کشور های در حال توسعه، افکار را به سمت طرح بتن هایی با ویژگی خاص و با دوام لازم سوق داده است. در این راستا در پاره ای از کشورها مشخصات و دستورالعمل ها واستانداردهایی نیز برای طرح بتن با عملکرد بالا تهیه شده و طراحان و مجریان در بعضی از این کشورهای پیشرفته ملزم به رعایت این دستورالعمل ها گشته اند.
در مواد تشکیل دهنده بتن نیز تحولات شگرفی حاصل شده است. استفاده از افزودنی های مختلف به عنوان ماده چهارم بتن، گسترش وسیعی یافته و در پاره ای از کشورها دیگر بتنی بدون استفاده از یک افزودنی در آن ساخته نمی شود. استفاده از سیمان های مختلف با خواص جدید و سیمان های مخلوط با مواد پوزولانی و نیز زائده های کارخانه های صنعتی روز به روز بیشتر شده و امید است که بتواند تحولی عظیم در صنعت بتن چه از نقطه نظر اقتصادی و چه از نظر دوام و نیز حفظ محیط زیست در قرن آینده بوجود آورد. در سازه های بتنی مسلح نیز جهت پرهیز از خوردگی آرماتور فولادی از مواد دیگری چون فولاد ضد زنگ و نیز مواد پلاستیکی و پلیمری (FRP) استفاده می شود که گسترش آن منوط به عملکرد آن در دراز مدت گشته است. با توجه به نیاز روز افزون به بتن های خاص که بتوانند عملکرد قابل و مناسبی در شرایط ویژه داشته باشند،سعی شده است تا در این مقاله به پاره ای از این بتن ها اشاره گردد. کاربرد مواد افزودنی به ویژه فوق روان کننده ها و نیز مواد پوزولانی به ویژه دوده سیلیس در تولید بتن با مقاومت زیاد و با عملکرد خوب مختصراً آورده می شود. بتن های خیلی روان که تحولی در اجرا پدید آورده است و نیز بتن های با نرمی بالا برای تحمل ضربه و نیروهای ناشی از زلزله نیز از مواردی است که باید به آنها اشاره نمود. کوشش های فراوان برای مبارزه با مسأله خوردگی آرماتور در بتن و راه حل ها و ارائه مواد جدید نیز در اواخر سالهای قرن بیستم پیشرفت شتابنده ای داشته است که به آنها اشاره خواهد شد.

افزودنی های خاص در شرایط ویژه :

برای ساخت بتن های ویژه در شرایط خاص نیاز به استفاده از افزودنی های مختلفی می باشد. پس از پیدایش مواد افزودنی حباب هواساز در سالهای 1940 کاربرد این ماده در هوای سرد و در مناطقی که دمای هوا متناوباً به زیر صفر رفته و آب بتن یخ می زند، رونق بسیار یافت. این ماده امروز یکی از پر مصرف ترین افزودنی ها در مناطق سرد نظیر شمال آمریکا و کانادا و بعضی کشورهای اروپایی است.
ساخت افزودنی های فوق روان کننده که ابتدا نوع نفتالین فرمالدئید آن در سالهای 1960 در ژاپن و سپس نوع ملامین آن بعداً در آلمان به بازار آمد شاید نقطه عطفی بود که در صنعت افزودنی ها در بتن پیش آمد. ابتدا این مواد برای کاستن آب و به دست آوردن کارایی ثابت به کار گرفته شد و چند سال بعد با پیدایش بتن های با مقاومت زیاد نقش این افزودنی اهمیت بیشتری یافت. امروزه بتن های مختلفی برای منظور ها و خواص ویژه و نیز به منظور مصرف در شرایط خاص با این مواد ساخته می شود که ازمیان آنها به ساخت بتن های با مقاومت زیاد، بتن های با دوام زیاد، بتن های با مواد پوزولانی زیاد (سرباره کوره های آهن گدازی و خاکستر بادی) بتن های با کارایی بالا، بتن های با الیاف و بتن های زیر آب و ضد شسته شدن می توان اشاره نمود.
بتن های با کارآیی بسیار زیاد که چند سالی است از پیدایش آن در جهان و برای اولین بار در ژاپن نمی گذرد، تحول جدیدی در صنعت ساخت و ساز بتنی ایجاد کرده است. این بتن که نیاز به لرزاندن نداشته و خود به خود متراکم می گردد، مشکل لرزاندن در قالب های با آرماتور انبوه و محلهای مشکل برای ایجاد تراکم را حل نموده است. این بتن علیرغم کارایی بسیار زیاد خطر جدایی سنگدانه ها و خمیر بتن را نداشته و ضمن ثابت بودن کارایی و اسلامپ تامدتی طولانی می تواند بتنی با مقاومت زیاد و دوام و پایاپی مناسب ایجاد کند. در طرح اختلاط این بتن باید نسبت های خاصی را رعایت نمود. به عنوان مثال شن حدود 50 درصد حجم مواد جامد بتن را تشکیل داده و ماسه حدود 40 درصد حجم ملات انتخاب می شود. نسبت آب به مواد ریزدانه و پودری بر اساس خواص مواد ریز بین 9/0 تا 1 می باشد. با روش آزمون و خطا نسبت دقیق آب به سیمان و مقدار ماده فوق روان کننده مخصوص برای مصالح مختلف تعیین می گردد. از این بتن با استفاده از افزودنی دیگری که گرانروی بتن را می افزاید در زیر آب استفاده شده است.

بتن های با عملکرد و دوام زیاد

از آنجا که رسیدن به مقاومت بالا در بتن از اهداف دست اندرکاران کارهای بتنی در دو دهه اخیر بوده است، ابتدا این نوع بتن با مقاومت بیش از MPA50 ساخته شد.با پایین آوردن نسبت آب به سیمان تا حد 3/0 رسیدن به چنین مقاومتهایی بسیار آسان است. برای ساخت بتن هایی با مقاومت بیشتر و در حد Mpa 110-80 و برای تقویت ناحیه فصل مشترک سنگدانه درشت و خمیر سیمان مواد سیلیسی فعال و غیر بلوری به نام دوده سیلیس به کار گرفته شد. همزمان سنگدانه هایی با مقاومت بیشتر و با دانه بندی مناسب تر و با کنترل حداکثر اندازه سنگدانه در این مخلوط ها به کار رفت.
از آنجا که در کاربرد این بتن گاه مقادیر بالایی سیمان و بیش از 400 کیلوگرم (حتی تا 500 کیلوگرم) مصرف می شد، علاوه بر گرانی این بتن، ترک هایی نیز حین ساخت به دلیل جمع شدگی پلاستیکی و ناشی از خشک شدن بیشتر این بتن ها و نیز ترک های حرارتی بوجود آمد. همچنین با افزایش این مقاومت تردی و شکنندگی بتن نیز افزایش یافت. چنین بتنی نمی توانست در شرایط محیطی سخت و محیطهای خورنده به علت وجود ترک های زیاد دوام قابل قبولی داشته باشد.
به منظور افزایش دوام حین افزایش مقاومت ضمن کاربرد دوده سیلیس و کم کردن آب و مصرف فوق روان کننده، مقدار سیمان کاهش یافته و در عوض مواد پوزولانی همچون دوده سیلیس، خاکستر بادی، سرباره کوره های آهن گدازی، خاکستر پوسته برنج و بالاخره پوزولان های طبیعی به صورت مواد ریزدانه جایگزین آن گردید. امروز شاهد ساخت بتن هایی با دوام که نفوذپذیری کمی دارند و در مقابل حملات شیمیایی کلرورها و سولفات ها و گاز کربنیک و بعضاً واکنش قلیایی پایدارتر می باشند، هستیم.
برای مصرف این بتن در سازه های بلند و رفع نقیصه شکنندگی در پاره ای موارد از الیاف های کوتاه استفاده شده تا بدین وسیله نرمی این بتن ها افزایش یابد. از مزایای عمده این بتن ها کاهش وزن ساختمان ها به علت کم کردن ابعاد ستون ها، صرفه جویی در میزان بتن و فولاد، کوتاه شدن دوران ساخت، تغییر شکل های وابسته به زمان کمتر و پایایی و داوم بشتر آنها می باشد.
به منظور کاستن وزن سازه های بتنی که با بتن با مقاومت زیاد ساخته می شوند چند سالی است که با مصرف بخشی از سنگدانه های سبک در آن، بتن های سبک تری تولید نموده اند. امروزه بتن هایی با وزن مخصوص 2 تن بر متر مکعب و مقاومت های mpa 80-60 در بعضی پروژه ها به کار رفته است. به علت دوام قابل قبولی که این بتن ها در آزمایشات متعدد از خود نشان داده اند مصرف آنها در چند سازه بتنی دریایی در محیط های خورنده در کشورهای نروژ، کانادا، ژاپن، آمریکا و استرالیا گزارش شده است.
در کشور ما نیز اخیراً با تولید دوده سیلیس در کارخانه های داخلی کاربرد این ماده در بتن آغاز گشته است. در چند پروژه در جنوب کشور که به علت داشتن آب و هوای گرم و محیطی خورنده برای بتن و نیز فولاد از سخت ترین شرایط محیطی برای بتن است، بتن با سیمان دارای حدود 7 تا 10 در صد میکرو سیلیس به عنوان جابگزین سیمان استفاده شده است. بایستی توجه داشت که به علت عدم آب انداختگی این بتن و واکنش های سریع و گرمای محیط خطر ایجاد ترک های پلاستیک در ساعات اولیه و سپس ترک های ناشی از خشک شدن و حرارتی در این بتن ها زیاد بوده و در صورت عدم کنترل و دقت و عمل آوری سریع و مناسب علیرغم مقاومت زیاد وجود ترک در این بتن ها سبب افزایش نفوذ پذیری آنها گشته و در نتیحه املاح و مواد خورنده به داخل بتن و خوردگی آرماتور خرابی بتن تشدید می گردد. در پاره ای از تونل های انتقال آب و نیز تونل سدها نیز از این ماده در طرح اختلاط بتن برای بتن پاشی پوشش استفاده شده است. پیوستگی خوب این بتن و کم شدن مصالح بازگشتی و مقاومت و دوام خوب از خصوصیات آن درپوشش تونل ها است. این ماده در لایه نهایی سرریز بعضی سدهای کشور نیز در حال استفاده و یا در آینده استفاده نخواهد شد. مصرف میکرو سیلیس در بتن سبب افزایش مقاومت سایشی و فرسایشی بتن می گردد.

بتن های با نرمی بالا

امزوزه کار برد بتن با نرمی بالاتر که بتواند تغییر شکل های زیاد را بدون شکست تحمل نماید، مورد توجه قرار گرفته است. تحقیقات در خصوص تأمین نرمی لازم در بتن با الیاف های مختلف و حتی حذف آرماتور در حال انجام می باشد. هدف از کاربرد الیاف در بتن افزایش مقاومت کششی، کنترل گسترش ترک ها و افزایش طاقت بتن می باشد تا قطعه بتنی بتواند در مقابل بارهای وارده در یک مقطع ترک خورده تغییر شکل های زیادی را پس از نقطه حداکثر تنش تحمل نماید.
بتن با الیاف مختلف در سال های اخیر در سازه های عمده ای چون رو سازی راهها و فرودگاه ها، پی های عظیم با تغییر شکل های زیاد و به ویژه در پوشش بتنی تونل ها به کار رفته است. در ساخت پوشش تونل ها بتن الیافی با پاشیدن بر جداره شکل می پذیرد. اخیراً برای حذف ترک ها در پوشش تونل هایی که به صورت چند تکه پیش ساخته اجرا می شود از بتن بدون آرماتور و تنها الیاف استفاده شده و این نوع بتن سبب حذف ترک ها در حین عمل آوری و حمل و نقل قطعات و نصب آنها برای کامل کردن مقطع تونل های مترو شده است.
در نوع بسیار جدید بتن الیافی که می توان با آن به حداکثر نرمی در بتن رسید از روش ریختن دوغاب روی الیاف استفاده می شود . در این روش ابتدا الیاف ریخته شده و سپس فضای بین آنها با ملات دوغابی پر می شود. میزان الیاف در این بتن حدود 10 در صد می باشد که حدود 10 برابر میزان الیاف در بتن های الیافی متداول است. با این مصالح لایه های محافظی بدون ترک و تقریبا غیر قابل نفوذ می توان ایجاد نمود. به علت نرمی زیاد این قطعات ظرفیت تغییر شکل پذیری این قطعات به میزان ظرفیت دال های فولادی می رسد. مقاومت فشاری این نوع بتن حدود 110-85 مگا پاسکال و مقاومت خمشی حدود N/m 45-35 می باشد. از این قطعات می توان نه تنها به عنوان لایه های محافظ کوچک استفاده نمود بلکه در باندهای فرودگاه در برابر ضربات عملکرد خوبی نشان می دهند. در کارهای تعمیراتی دال ها می توان از آنها به عنوان لایه روی بتن قدیم و بدون درز و در زمان کوتاهی استفاده نمود.

آرماتورهای غیر فولادی در بتن

در سال های اخیر استفاده محدودی از آرماتورهای غیر فلزی آغاز گشته است هر چند تحقیقات بر روی کاربرد وسیعتر آنها و عملکرد دراز مدت این نوع آرماتورها ادامه دارد این آرماتورها که معروف به آرماتورهای با الیاف پلاستیکی (FRP) هستند از الیاف مختلفی چون الیاف شیشه ای (GFRP) الیاف آرامیدی (Afrp) والیاف کربنی (CFRP) در یک رزین چسباننده تشکیل شده اند.
خاصیت عمده این آرماتورها که سبب کار برد آنها شده است مقاومت در برابر خوردگی آنهاست که می تواند در محیط های بسیار خورنده دوام دراز مدتی داشته باشند. علاوه بر این مقاومت بالا، مقاومت به خستگی بالا، ظرفیت بالای تغییر شکل ارتجاعی، مقاومت الکتریکی زیاد و هدایت مغناطیسی پایین و کم این مواد از مزایای آنها شمرده می شود. البته این مواد معایبی چون کرنش گسیختگی کم و شکننده بودن و خزش زیاد و تفاوت قابل ملاحظه ضریب انبساط حرارتی آنها در مقایسه با بتن را به همراه دارند.
اخیراً از الیاف مختلف شبکه هایی بافته شده و به صورت یک شبکه آرماتور در سطح بتن برای کنترل ترک و کم کردن عرض آن و همچنین در دیوارهای نمای بتنی ازآن استفاده می کنند. تحقیقات روی کاربرد صفحات الیافی به جای صفحات فولادی برای تقویت قطعات خمشی و تیرها و دال ها به ویژه در پل ها ادامه دارد. این صفحات با رزین های اپوکسی به نواحی کششی از خارج اتصال داده می شود. کاربرد صفحات با الیاف کربنی برای این تقویت بیشتر رایج گشته و در چندین پل در ژاپن و در بعضی کشورهای اروپایی از آن استفاده شده است.

بتن سبک و اثر میکروسیلیسها در افزایش مقاومت


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/Aban/06/00001951.jpg
تولید سیمان که ماده اصلی چسبندگی در بتن است در سال ۱۷۵۶ میلادی در کشور انگلستان توسط «John smeaton » که مسئولیت ساخت پایه برج دریایی «Eddystone » را بر عهده داشت آغاز شد و درنهایت سیمان پرتلند در سال ۱۸۲۴ میلادی در جزیره ای به همین نام در انگلستان توسط «Joseph Aspdin » به ثبت رسید . مردم کشور ما نیز از سال ۱۳۱۲ با احداث کارخانه سیمان ری با مصرف سیمان آشنا شدند و با پیشرفت صنایع کشور ، امروزه در حدود ۲۶ الی ۳۰ میلیون تن سیمان در سال تولید می گردد . با آگاهی مهندسان از نحوه استفاده سیمان در کارهای عمرانی ، این ماده جایگاه خودش را در کشورمان پیدا کرد .
یکی از روشهای ساختمان سازی که امروزه در جهان به سرعت توسعه می یابد ساختمانهای بتنی است . بعد از انقلاب اسلامی به علت کمبود تیر آهن در نتیجه تحریمها و نیز گسترش ساخت و سازهای عمرانی در کشور ، کاربرد بتن بسیار رشد نمود . علاوه بر این موضوع ساختمانهای بتنی نسبت به ساختمانهای فولادی دارای مزایایی از قبیل مقاومت بیشتر در مقابل آتش سوزی و عوامل جوی ( خورندگی ) آسان بودن امکان تهیه بتن به علت فراوانی مواد متشکله بتون و عایق بودن در مقابل حرارت و صوت می باشند که توسعه روز افزون این نوع ساختمانها را فراهم می سازد .
یکی از معایب مهم ساختمانهای بتنی وزن بسیار زیاد ساختمان می باشد که با میزان تخریب ساختمان در اثر زلزله نسبت مستقیم دارد . اگر بتوانیم تیغه های جدا کننده و پانل ها را از بتن سبک بسازیم وزن ساختمان و در نتیجه آن تخریب ساختمان توسط زلزله مقدار زیادی کاهش می یابد . ولی کم بودن مقاومت بتن سبک عامل مهمی در محدود نمودن دامنه کاربرد این نوع بتن و بهره گیری از امتیازات آن بوده است . استفاده از میکروسیلیس در ساخت بتن سبک سبب شده است که مقاومت بتن سبک بالا رود و این محدودیت کاهش یابد . در این تحقیق ضمن توضیحاتی در مورد بتن و تاثیر آب بر روی مقاومت بتن ، بیشتر در باره بتن سبک و روشهای افزایش مقاومت آن با استفاده از میکروسیلس ، خواص مکانیکی و همچنین موارد کاربرد آن بحث می شود .
۱- سیمان
- سیمان تولید شده در کشور ما با سیمان تولید شده در کشورهای صنعتی متفاوت است که لازم است تفاوت آن تا حد ممکن بررسی شود .
- طبقه بندی سیمانها شناسایی شود .
- عدم تنوع در کیفیت سیمان نشانه ضعفهایی از سیستم ساخت و ساز می باشد .
- عدم استفاده از سیمان با کیفیت بالا از عوامل اولیه عمر کوتاه ساختمان در بحث مصالح می باشد .
۲- شن و ماسه
- معیارها و آئین نامه های تولید کلان شن و ماسه بررسی شود .
- تولید کلان شن و ماسه در کشور ما از نظر معیار و رعایت آئین نامه های تولید بررسی شود .
- معایب شن و ماسه تولیدی در کشور در حد کلان بدلائل زیر آنرا در درجه دوم و یا سوم کیفیت قرار می دهد .
الف- وجود گرد و غبار
ب-عدم شستشو
ج- دانه بندی نا صحیح
د- استفاده از شن و ماسه رودخانه ای بجای شن و ماسه شکسته .
ه- استفاده از شن و ماسه درجه ۲ و یا ۳ از عوامل ثانوی عمر کوتاه ساختمان در بحث مصالح می باشد .
افزایش مقاومت بتن مد نظر تمام دست اندرکاران صنعت تولید بتن می باشد .

ساختار بتن :

- بتن دارای چهار رکن اصلی می باشد که به صورت مناسبی مخلوط شده اند ، این چهار رکن عبارتند از :
الف- شن
ب- ماسه
ج- سیمان
د- آب
- در برخی شرایط برای رسیدن به هدفی خاص مواد مضاف به آن اضافه می شود که جز&#۶۵۱۵۲; ارکان اصلی بتن به شمار نمی آید .
- توده اصلی بتن مصالح سنگی درشت و ریز ( شن و ماسه ) می باشد .
- فعل و انفعال شیمیایی بین سیمان و آب موجب می شود شیرابه ای بوجود آید و اطراف مصالح سنگی را بپوشاند و مصالح سنگی را بصورت یکپارچه بهم بچسباند .
- استفاده از آب برای ایجاد واکنش شیمیایی است .
- برای ایجاد کار پذیری لازم بتن مقداری آب اضافی استفاده می شود تا بتن با پر کردن کامل زوایای قالب بتواند دور کلیه میلگرد های مسلح کننده را بگیرد .
- جایگاه استفاده آب در بتن به لحاظ انجام عمل هیدراتاسیون دارای حساسیت بسیار زیادی است .

ویژگیهای آب مصرفی بتن :

- آب های مناسب برای ساختن بتن:
۱- آب باران
۲- آب چاه
۳- آب برکه
۴- آب رودخانه در صورتی که به پسابهای شیمیایی کارخانجات آلوده نباشد و غیره …
بطور کلی آبی که برای نوشیدن مناسب باشد برای بتن نیز مناسب است باستثنا&#۶۵۱۵۲; مواردی که متعاقبا توضیح داده خواهد شد .

آبهای نا مناسب برای ساختن بتن:

۱- آبهای دارای کلر ( موجب زنگ زدگی آرماتور می شود)
۲- آبهایی که بیش از حد به روغن و چربی آلوده می باشند .
۳- وجود باقیمانده نباتات در آب .
۴- آب گل آلود ( موجب پایین آوردن مقاومت بتن می شود )
۵- آب باتلاقها و مردابها
۶- آبهای دارای رنگ تیره و بدبو
۷- آبهای گازدار مانند co۲ و…
۸- آبهای دارای گچ و سولفات و یا کلرید موجب اثر گذاری نا مطلوب روی بتن می شوند .
ـ نکته : ۱- آبی که مثلا شکر در آن حل شده است برای نوشیدن مناسب است ولی برای ساخت بتن مناسب نیست .
ـ نکته : ۲- مزه بو و یا منبع تهیه آب نباید به تنهایی دلیل رد استفاده از آب باشد .
ـ نکته : ۳- ناخالصیهای موجود در آب چنانچه از حد معین بیشتر گردد ممکن است بشدت روی زمان گرفتن بتن ، مقاومت بتن ، پایداری حجمی آن ، اثر بگذارد و موجب زنگ زدگی فولاد شود .
ـ نکته : ۴- استفاده از آب مغناطیسی بعنوان یکی از چهار رکن اصلی مخلوط بتن می تواند بعنوان تاثیرگذار بر روی یارامترهای مقاومت بتن انتخاب گردد .

تمایز بتن از نظر چگالی :

الف- بتن معمولی : چگالی بتن معمولی در دامنه باریک ۲۲۰۰ تا ۲۶۰۰ kg/m۳ قرار دارد زیرا اکثر سنگها در وزن مخصوص تفاوت اندکی دارند
ب- بتن سنگین : از این بتنها در ساختمان محافظهای بیولوژیکی بیشتر استفاده می شود مانند ساختار ، آکتورهای هسته ای و پناهگاههای ضد هسته ای که مورد بحث ما نمی باشد که چگالی آن معمولا بیشتر از ۲۲۰۰ تا ۲۶۰۰ کیلوگرم بر متر مکعب می باشد .
ج- بتن سبک : مصرف بتن سبک اصولا تابعی از ملاحظات اقتصادی است ضمن اینکه استفاده از این بتن بعنوان مصالح ساختمانی دارای اهمیت بسیار زیادی است این بتن دارای چگالی کمتر از ۲۲۰۰ تا ۲۶۰۰ کیلوگرم در متر مکعب می باشد . بدلیل اینکه دارای چگالی کمتر از بتن سنگین است دارای امتیاز قابل توجهی از نظر ایجاد بار وارده بر سازه می باشد چگالی بتن سبک تقریبا بین ۳۰۰ و ۱۸۵۰ کیلوگرم بر متر مکعب می باشد یکی از امتیازات مهم امکان استفاده از مقاطع کوچکتر و کاهش مربوطه در اندازه پی ها می باشد ضمن اینکه قالبها فشار کمتری را از حالت بتن معمولی تحمل می کنند و همچنین در کاهش جابجایی کل وزن مصالح بدلیل افزایش تولید جایگاه ویژه ای دارد .

روش های کلی تولید بتن سبک :

روش اول : از مصالح متخلخل سبک با وزن مخصوص ظاهری کم بجای سنگدانه معمولی که تقریبا دارای چگالی ۶/۲ می باشد استفاده می کنند .
روش دوم : بتن سبک تولید شده در این روش بر اساس ایجاد منافذ متعدد در داخل بتن یا ملات می باشد که این منافذ باید به وضوح از منافذ بسیار ریز بتن با حباب هوا متمایز باشد که بنام بتن اسفنجی ، بتن منفذ دار و یا بتن گازی یا بتن هوادار می شناسند .
روش سوم : در این روش تولید ، سنگدانه ها ی ریز از مخلوط بتن حذف می شوند . بطوریکه منافذ متعددی بین ذرات بوجود می آید و عموما از سنگدانه های درشت با وزن معمولی استفاده می شود . این نوع بتن را بتن بدون سنگدانه ریز می نامند .
ـ نکته : کاهش در وزن مخصوص در هر حالت به واسطه و جود منافذ یا در مصالح یا در ملات و یا در فضای بین ذرات درشت موجب کاهش مقاومت بتن می شود .

طبقه بندی بتن های سبک بر حسب نوع کاربرد آنها :

- بتن سبک بار بر ساختمان
- بتن مصرفی در دیوارهای غیر بار بر
- بتن عایق حرارتی
مثال : طبق استاندارد ۷۷ – ۳۳۰ ASTM C در بتن سبک ---- مقاومت فشاری بر مبنای نمونه های استوانه ای استاندارد از شده پس از ۲۸ روز نباید کمتر از Mpa ۱۷ باشد . و وزن مخصوص آن نباید از ۱۸۵۰ کیلوگرم بر متر مکعب تجاوز نماید که معمولا بین ۱۴۰۰ او ۱۸۰۰ کیلوگرم بر متر مکعب است .
نکته : ۲- بتن مخصوص عایق کاری معمولا دارای وزن مخصوص کمتر از ۸۰۰ کیلوگرم بر متر مکعب و مقاومت بین ۷/۰ و Mpa ۷ می باشد .

انواع سبک دانه هایی که به عنوان مصالح در ساختار بتن سبک استفاده می شود :

الف- سبک دانه های طبیعی : مانند دیاتومه ها ، سنگ پا ، پوکه سنگ ، خاکستر ، توف که بجز دیاتومه ها بقیه آنها منشا&#۶۵۱۵۲; آتشفشانی دارند .
ـ نکته :۱- این نوع سبک دانه ها معمولا بدلیل اینکه فقط در بعضی از جاها یافت می شوند به میزان زیاد مصرف نمی شوند ، معمولا از ایتالیا و آلمان اینگونه مصالح صادر می شود .
ـ نکته : ۲- از انواعی پوکه معدنی سنگی که ساختمان داخلی آن ضعیف نباشد بتن رضایت بخشی با وزن مخصوص ۷۰۰ تا ۱۴۰۰ کیلو گرم بر متر مکعب تولید می شود که خاصیت عایق بودن آن خوب می باشد اما جذب آب و جمع شدگی آن زیاد است . سنگ پا نیز دارای خاصیت مشابه است .
ب- سبک دانه های مصنوعی : این سبک دانه ها به چهار گروه تقسیم می شوند:
- گروه اول : که با حرارت دادن و منبسط شدن خاک رس ، سنگ رسی ، سنگ لوح ، سنگ رسی دیاتومه ای ، پرلیت ، اسیدین، ورمیکولیت بدست می آیند .
- گروه دوم : از سرد نمودن و منبسط شدن دوباره کوره آهن گدازی به طریقی مخصوص بدست می آید
- گروه سوم : جوشهای صنعتی ( سبکدانه های کلینکری) می باشند .
- گروه چهارم : مخلوطی از خاک رس با زباله خانگی و لجن فاضلاب پردازش شده را می توان به صورت گندوله در آورد تا با پختن در کوره تبدیل به سبک دانه شود ولی این روش هنوز به صورت تولید منظم در نیامده است.

ریپورتر
27th March 2010, 03:01 PM
الزامات سنگدانه ها بتن سازه ای :

الزامات سبکدانه ها در آیین نامه های ASTM C۳۳۰-۸۹ ( مشخصات سبکدانه ها برای بتن سازه ای در آمریکا ) و BS ۳۷۹۷:۱۹۹۰ ( مشخصات سبکدانه ها برای قطعات بنایی و بتن سازه ای در بریتانیا ) داده شده اند . در استاندارد بریتانیایی مشخصات واحدهای بنایی نیز مورد بحث قرار گرفته است . این آیین نامه ها محدودیتهایی برای افت حرارتی ( ۵% درASTM و۴% در BS)و همچنین در BS برای مقدار سولفات (% ۳ so )به صورت جرمی را مشخص نموده اند .
▪ ذکر این نکات برای فهم بهتر مفید است :
۱- آیین نامه BS ۱۰۴۷:۷۹۸۳ مشخصات دوباره در هوای سرد شده ، که منبسط نشده است را در بر می گیرد .
۲- سبکدانه های به کار رفته در بتن سازه ای ، صرفنظر از منشأ آنها تولیداتی مصنوعی می باشند و در نتیجه معمولا یکنواخت تر از سبکدانه طبیعی می باشند . بنابراین سبکدانه را می توان برای تولید بتن سازه ای با کیفیت ثابت مورد استفاده قرار داد .
نکته : سبکدانه ها دارای خصوصیت ویژه ای هستند که سنگدانه های معمولی فاقد آن می باشند و در رابطه با انتخاب نسبتهای مخلوط و خواص مربوط به بتن حاصل دارای اهمیت ویژه ای می باشند .این ویژگی عبارتست از توانایی سبکدانه ها در جذب مقادیر زیاد آب و همچنین امکان نفوذ مقداری از خمیر تازه سیمان به درون منافذ باز ( سطحی ) ذرات سبکدانه (مخصوصا ذرات درشت تر ) در نتیجه این جذب آب توسط سبکدانه ، وزن مخصوص آنها زیادتر از وزن مخصوص ذراتی می شود که در گرمچال خشک شده اند .

روشهای افزایش مقاومت بتن سبک :

کم بودن مقاومت بتن سبک عامل مهمی در محدود نمودن دامنه کاربرد این نوع بتن و بهره گیری از امتیازات آن بوده است برای بدست آوردن بتن سبک با مقاومت زیاد روشهای زیادی مورد توجه قرار گرفته است .
ـ نکته : عامل موثر و مشترک در کلیه این پژوهشها مصرف میکروسیلیس در بتن می باشد . در اینجا اجمالا به چند روش اشاره می گردد :
۱- تحقیقات مشترک V.Novokshchenov و W.Whitcomb جهت افزایش مقاومت بتن سبک و بهبود دیگر خواص آن با استفاده از سبکدانه های سیلیسی منبسط شده ، به اعتقاد آنان مقاومت بتن سبک تابعی از مقاومت سبکدانه ها و ملات است که این رابطه به صورت ذیل ارائه گردید .
fc = fm (vm)+fa (۱-vm)
=fc مقاومت بتن = fa مقاومت سبکدانه
=fmمقاومت ملات = vm حجم نسبی ملات
بدین ترتیب مشاهده می شود که می توان با افزایش مقاومت سبکدانه و مقاومت و حجم ملات مقاومت بتن سبک را افزایش داد .

مقابله با خوردگی بتن

مسأله خوردگی فولاد در بتن از معضلات عمده کشورهای مختلف جهان است. این مسأله حتی در کشورهای پیشرفته همچون آمریکا، کانادا، ژاپن و بعضی کشورهای اروپایی هزینه های زیادی را برای تعمیر آنها به دنبال داشته است. به عنوان مثال درگزارش های اخیر بررسی پل ها در امریکا حدود 140،000 پل مسأله داشته اند. این مسأله در کشورهای در حال توسعه و در کشورهای حاشیه خلیج فارس بسیار شدیدتر بوده و سازه های بتنی زیادی در زمانی نه چندان طولانی دچار خوردگی و خرابی گشته اند. بررسی ها در این مناطق نشان می دهد که اگر مصالح مناسب انتخاب گردد، بتن با مشخصات فنی ویژه این مناطق طرح گردد، در اجرای بتن از افراد کاردان استفاده شود و سرانجام اگر عمل آوری کافی ومناسب اعمال شود، بسیاری از مسائل بتن بر طرف خواهد گشت. به هرحال برای پیشگیری در سال های اخیر روش ها و موادی توصیه و به کار گرفته شده است که تا حدی جوابگوی مسأله بوده است.
استفاده از آرماتورهای ضدزنگ و نیز آرماتورهای با الیاف پلاستیکیfrp یکی از این روش ها است که به علت گرانی آن هنوز کاملا توسعه نیافته است. به علاوه عملکرد دراز مدت این مواد باید پس از تحقیقات روشن گردد.
از روش های دیگر کاربرد حفاظت کاتدیک در بتن می باشد با استفاده از جریان معکوس با آند قربانی شونده می توان محافظت خوبی برای آرماتورها ایجاد نمود. این روش نیاز به مراقبت دائم دارد ونسبتا پرخرج است ولی روش مطمئنی می باشد.
برای محافظت آمارتور در مقابل خوردگی، چند سالی است که از آرماتور با پوشش اپوکسی استفاده می شود. تاریخچه مصرف این آرماتورها بویژه در محیط های خورنده نشان می دهد که در بعضی موارد این روش موفق و در پاره ای نا موفق بوده است. به هرحال اگر پوشش سالم بکار گرفته شود با این روش می توان حدود 10 تا 15 سال خوردگی را عقب انداخت.
استفاده از ممانعت کننده ها و بازدارنده های خوردگی بتن نیز به دو دهه اخیر برمی گردد. مصرف بعضی از این مواد همچون نیترات کلسیم و نیترات سدیم جنبه تجارتی یافته است. به هر حال عملکرد این مواد در تاخیر انداختن خوردگی در تحقیقات آزمایشگاهی و نیز در محیط های واقعی مناسب بوده است. بازدارنده های دیگری از نوع آندی و کاتدی مورد آزمایش قرار گرفته اند ولی دلیل گرانی زیاد هنوز کاربرد صنعتی پیدا نکرده اند.
برای محافظت بیشتر آرماتور و کم کردن نفوذپذیری پوشش های مختلف سطحی نیز روی بتن آزمایش و به کار گرفته شده است. این پوشش ها که اغلب پایه سیمانی و یا رزینی دارند با دقت روی سطح بتن اعمال می گردند. عملکرد دوام این پوشش به شرایط محیطی وابسته بوده و در بعضی محیط ها عمر کوتاهی داشته و نیاز به تجدید پوشش بوده است. روی هم رفته پوشش های با پایه سیمانی هم ارزانتر بوده و هم به علت سازگاری با بتن پایه پیوستگی و دوام بهتری در محیط های خورنده و گرم نشان می دهند.
با پیشرفت روزافرون انقلاب تکنولوژیک به ویژه در تولید بتن های خاص برای مناطق و شرایط خاص می توان از این بتن ها در ساخت وسازهای آینده استفاده نمود. دانش استفاده صحیح از مصالح، اجرای مناسب و عمل آوری کافی می تواند به دوام بتن ها در مناطق خاص بیفزاید. تحقیفات گسترده و دامنه داری برای بررسی دوام بتن های خاص در شرایط ویژه و در دراز مدت بایستی برنامه ریزی و به صورت جهانی به اجرا گذاشته شود.

تکنولوژی بتن


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/Aban/06/00001961.jpg
ضرورت تحقیق در خصوص مصالح ساختمانی بویژه بتن به عنوان عنصر شاخص در ساخت و ساز، از چند دهه گذشته در کانون توجه موسسه های تحقیقاتی در کشورهای مختلف بوده است. در کشور ما با توجه به حجم انبوه ساخت و سازها در بخش عمومی و در بخش خصوصی و همچنین سرمایه گذاری های عظیم برای ساخت فرا سازه ها، که بخش بزرگتر آنها را سازه های بتنی تشکیل می دهند، پرداختن به موضوع پژوهش در زمینه مصالح ساختمانی و خصوصا بتن از اهمیت زیادی برخوردار است. در کشورهای پیشرفته، امروزه بخش قابل ملاحظه ای از بتن های مصرفی را بتن های خاص تشکیل می دهد؛ و با توجه به قابلیت های شگرف این مصالح ساختمانی ، تحول های اساسی در تکنیک ها و روش های ساخت و سازه ها ایجاد شده است.
آزمایشگاه مصالح ساختمانی دانشکده ی فنی دانشگاه تهران از بدو تاسیس به عنوان یکی از مراکز معتبر آزمایشگاهی مصالح ساختمانی در کشور محسوب می شده و هم اکنون به عنوان آزمایشگاه مرجع مورد قبول سازمانها و رسمی است . موسسه ی مصالح ساختمانی دانشکده فنی دانشگاه تهران در همکاری با آزمایشگاه مصالح ساختمانی با هدف ارتباط با صنعت ساختمان و انجام پروژه های علمی، تحقیقاتی، مشاوره ای، مدیریتی و اجرایی به منظورارتقای کیفی و کمی دانش مربوط به مصالح و فراورده های ساختمانی و نیز کاربرد آنها شامل : مطالعات رفتاری، فن آوری تولید، کاربرد مصالح و فرآورده های بتنی، ترمیم و نگهداری سازه ها و طراحی سازه های بتنی محافظ شروع به کار کرده است. این مرکز تاکنون توانسته است بیش از۲۰ نفر از نخبگان ( دانشجویان افتخار آفرین در مسابقات بین المللی انجمن بتن آمریکا در سه سال اخیر) و فارغ التحصیلان دانشکده فنی را جذب کند.
موسسه ی مصالح ساختمانی با بهره گیری از تجهیزات کامل آزمایشگاه مصالح ساختمانی ، مسوولان مجرب، نخبگان و فارغ التحصیلان دانشکده ی فنی آماده ارائه خدمات گسترده به صنعت ساختمان کشور می باشد و هم اکنون مورد توجه صاحبان صنایع ساختمانی در زمینه های مختلف قرار گرفته و قراردادهای پژوهشی و تحقیقاتی متعددی را منعقد نموده است.
موسسه ی مصالح ساختمانی دانشکده ی فنی با همکاری آزمایشگاه مصالح ساختمانی با توجه به ظرفیت قابل ملاحظه ی خود توانایی ارایه ی خدمات مشاوره ای_ پژوهشی و آزمایشگاهی وسیعی در زمینه های مختلف صنایع ساختمانی را داراست.
حفاظت کاتدیک فولاد در سازههای فولادی و نیز میلگردهای فولادی در سازههای بتنی
اگرچه حفاظت کاتدیک فولاد از دیرباز در دنیا مطرح بوده است؛ در ایران و به خصوص در سازههای دریایی و ساحلی خلیجفارس این مسئله کمتر مورد توجه قرار گرفته است. عمدهترین حفاظت به کار گرفته شده در ایران معمولاً استفاده از رنگهای مخصوص بوده که این مساله در مورد میلگردهای به کار رفته در سازههای بتن مسلح قابل استفاده نیست. به همین جهت در سازههای بتن مسلح ساحلی و دریایی خلیجفارس، بزرگترین مساله، خوردگی میلگردها و مترادف با آن زوال و خردشدگی بتن بوده است؛ به طوری که گاه عمر سازه ی بتن مسلح را به کمتر از ۵ سال نیزکاهش داده است. بررسی های مناسب در این ارتباط و تنظیم توصیهنامه و دستورالعمل مناسب در جهت حفاظت کاتدیک فولاد به خصوص در سازههای بتن مسلح، میتواند در این راستا بسیار راهگشا باشد. اجباری کردن رعایت چنین دستورعملهایی در سازههای بتن مسلح ساحلی و دریایی جنوب توسط مقام های ذیصلاح، به صرفهجویی کلانی در سرمایههای کشور منجر خواهد شد.

فرسودگی بتن

علل مختلفی که باعث فرسودگی و تخریب سازه های بتنی می شوند - علائم هشدار دهنده که کار مرمت را الزامی می دارند.
۱( علل فرسودگی و تخریب سازه های بتنی
علل مختلفی که باعث فرسودگی و تخریب سازه های بتنی می شود همراه با علائم هشدار دهنده دیگری که کار تعمیرات را الزامی می دارند، در نخستین بخش از کتاب مورد بررسی و تحلیل قرار می گیرند:
۱-۱( نفوذ نمکها
نمکهای ته نشین شده که حاصل تبخیر و یا جریان آبهای دارای املاح می باشند و همچنین نمکهایی که توسط باد در خلل و فرج و ترکها جمع می شوند، هنگام کریستالیزه شدن می توانند فشار مخربی به سازه ها وارد کنند که این عمل علاوه بر تسریع و تشدید زنگ زدگی و خوردگی آرماتورها به واسطه وجود نمکهاست. تر وخشک شدن متناوب نیز می تواند تمرکز نمکها را شدت بخشد زیرا آب دارای املاح، پس از تبخیر، املاح خود را به جا می گذارد.
۱-۲( اشتباهات طراحی
به کارگیری استانداردهای نامناسب و مشخصات فنی غلط در رابطه با انتخاب مواد، روشهای اجرایی و عملکرد خود سازه، می تواند به خرابی بتن منجر شود. به عنوان مثال استفاده از استانداردهای اروپایی و آمریکایی جهت اجرای پروژه هایی در مناطق خلیج فارس، جایی که آب و هوا و مواد و مصالح ساختمانی و مهارت افراد متفاوت با همه این عوامل در شمال اروپا و آمریکاست، باعث می شود تا دوام و پایایی سازه های بتنی در مناطق یاد شده کاهش یافته و در بهره برداری از سازه نیز با مسائل بسیار جدی مواجه گردیم.
۱-۳( اشتباهات اجرایی
کم کاریها، اشتباهات و نقصهایی که به هنگام اجرای پروژه ها رخ می دهد، ممکن است باعث گردد تا آسیبهایی چون پدیدهء لانه زنبوری، حفره های آب انداختگی، جداشدگی، ترکهای جمع شدگی، فضاهای خالی اضافی یا بتن آلوده شده، به وجود آید که همگی آنها به مشکلات جدی می انجامند.
این گونه نقصها و اشکالات را می توان زاییدهء کارآئی، درجهء فشردگی، سیستم عمل آوری، آب مخلوط آلوده، سنگدانه های آلوده و استفاده غلط از افزودنیها به صورت فردی و یا گروهی دانست.
۱-۴(حملات کلریدی
وجود کلرید آزاد در بتن می تواند به لایهء حفاظتی غیر فعالی که در اطراف آرماتورها قرار دارد، آسیب وارد نموده و آن را از بین ببرد.
خوردگی کلریدی آرماتورهایی که درون بتن قرار دارند، یک عمل الکتروشیمیایی است که بنا به خاصیتش، جهت انجام این فرآیند، غلظت مورد نیاز یون کلرید، نواحی آندی و کاتدی، وجود الکترولیت و رسیدن اکسیژن به مناطق کاتدی در سل (CELL)خوردگی را فراهم می کند.
گفته می شود که خوردگی کلریدی وقتی حاصل می شود که مقدار کلرید موجود در بتن بیش از ۶/۰ کیلوگرم در هر متر مکعب بتن باشد. ولی این مقدار به کیفیت بتن نیز بستگی دارد.
خوردگی آبله رویی حاصل از کلرید می تواند موضعی و عمیق باشد که این عمل در صورت وجود یک سطح بسیار کوچک آندی و یک سطح بسیار وسیع کاتدی به وقوع می پیوندد که خوردگی آن نیز با شدت بسیار صورت می گیرد. از جمله مشخصات (FEATURES ) خوردگی کلریدی، می توان موارد زیر را نام برد:
الف- هنگامی که کلرید در مراحل میانی ترکیبات (عمل و عکس العمل) شیمیایی مورد استفاده قرار گرفته ولی در انتها کلرید مصرف نشده باشد.
ب- هنگامی که تشکیل همزمان اسید هیدروکلریک، درجه PH مناطق خورده شده را پایین بیاورد. وجود کلریدها هم می تواند به علت استفاده از افزودنیهای کلرید باشد و هم می تواند ناشی از نفوذیابی کلرید از هوای اطراف باشد.
فرض بر این است که مقدار نفوذ یونهای کلریدی تابعیت از قانون نفوذ FICK دارد. ولی علاوه بر انتشار (DIFFUSION) به نفوذ (PENETRATION) کلرید احتمال دارد به خاطر مکش موئینه (CAPILLARY SUCTION) نیز انجام پذیرد.
۱-۵( حملات سولفاتی
(SULPHATE ATTACK)
محلول نمکهای سولفاتی از قبیل سولفاتهای سدیم و منیزیم به دو طریق می توانند بتن را مورد حمله و تخریب قرار دهند. در طریق اول یون سولفات ممکن است آلومینات سیمان را مورد حمله قرار داده و ضمن ترکیب، نمکهای دوتایی از قبیل:THAUMASITE و ETTRINGITEتولید نماید که در آب محلول می باشند. وجود این گونه نمکها در حضور هیدروکسید کلسیم، طبیعت کلوئیدی(COLLOIDAL) داشته که می تواند منبسط شده و با ازدیاد حجم، تخریب بتن را باعث گردد. طریق دومی که محلولهای سولفاتی قادر به آسیب رسانی به بتن هستند عبارتست از: تبدیل هیدروکسید کلسیم به نمکهای محلول در آب مانند گچ (GYPSUM) و میرابلیت MIRABILITE که باعث تجزیه و نرم شدن سطوح بتن می شود و عمل LEACHING یا خلل و فرج دار شدن بتن به واسطه یک مایع حلال، به وقوع می پیوند.

تعمیر بتن در مناطق دریایی

در مناطق گرمسیری و دریایی، به سبب وجود شرایط محیطی حاد و خورنده، سازههای بتن مسلح در معرض ابتلا به انواع خرابیها قرار دارند. در حال حاضر سالانه برای ترمیم خرابیهای آرماتور و خسارت ناشی از آن، میلیاردها دلار در سراسر دنیا هزینه میشود. تعمیر بتن در مناطق دریایی شامل تعمیر بتن در خارج از آب و تعمیر آن در داخل آب میگردد. در خارج از آب عمدهترین خرابیها ناشی از خوردگی میلگرد در بتن، خرابی سولفاتی، واکنش قلیایی سنگدانهها و کربناتی شدن بتن میباشد که سبب خوردگی فولاد میگردد. تعمیر سازههای بتنی در زیر آب مسائل پیچیده و مشکلی را در بردارد. هر چند که روشهای تعمیر و نوع مصالحی که به کار میرود شبیه به حالتهای تعمیر بتن در خارج از آب است، ولی شرایط سخت محیطی و مشکلاتی که کار در زیر آب و یا در ناحیه ی پاشش آب به همراه دارد، تفاوتهای عمدهای را ایجاد میکند. فرسایش و تخریب بتن در نواحی جزر و مد و یا در ناحیه ی پاشش آب نیز یک مساله ی جدی از نقطه نظر اقتصادی میباشد. موج آب که حاوی اکسیژن و املاح متعددی میباشد، اثر تخریبی مؤثری بر سنگدانههای بتن دارد.

ساختمانهای بتنی

یک مد خرابی معمول در سازه های بتنی بهنگام زلزله، فرو افتادن دال کف، تقریبا بدون شکست، بر روی کف زیرین خود میباشد. در این نوع خرابی که تحت عنوان " پن کیک " از آن یاد میشود، دالهای کف فرو افتاده از دسترسی و رهایی مصدومان جلوگیری می کند و لذا مشکلات زیادی را بخصوص درصورتی که موقعیت و وضعیت قربانی نا معلوم باشد ایجاد می نماید. دال بتنی هر طبقه به ابعاد ۳۰ متر در ۳۰ متر و به ضخامت ۱۰ سانتیمتر وزنی بالغ بر ۲۵۰ تن دارد که از ظرفیت جرثقیل های معمول فراتر است. لذا باید این دالهای بتنی به قطعات کوچکتر بریده شوند تا قابل حمل و جابجائی بوسیله جرثقیل های عادی شوند.

ترمیم سازهای بتونی

خوردگی یکی از مؤثرترین فاکتورها در تعیین عمراقتصادی برای ساختمانها می باشد.خوردگی نتیجه یک سری فعل و انفعالات شیمیایی در بتون و آرماتور ها می باشد . در بتون آرماتورها توسط محا فظت می گردد. (PH=۱۳) بالا که از خصوصیات بتون می باشد PH بالا کاهش یابد، محافظت بتون از روی آرماتورها حذف می گردد و این جزء از PH زمانی که این مقاطع بتونی زنگ می زند ،این زنگ زدگی باعث افزایش حجم میلگردها می گردد که این موضوع موجب ایجاد ترک در مقطع به موازات میل گردها خواهد شد. زمانیکه بتون ترک خورد میل گرد به طور کامل در معرض اثرات جوی و عوامل خوردگی قرار می گیرد که این خود باعث کاهش عمر ساختمان خواهد گردید . از عوامل د یگرخوردگی در بتون یک واکنش شیمیایی با نام کربناسیون در مقطع بتونی است که عامل آن یون های فعال کلسیم که ناشی از هیدراسیون سیمان است ، می باشد. این یون های فعال به سرعت با گازهای جو و رطوبت هوا واکنش انجام داده و باعث ایجاد ترکیبات شیمیایی پیچیده می گردد که سبب تغییرات درمشخصات مقطع خواهد گردید. این زنجیره از واکنشهای شیمیایی به سرعت بتو ن را کاهش داده و بنابراین باعث شروع خوردگی در میل گردها می گردد. در ادامه PH سیمان نیز خواص خود را از دست می دهد و قابلیت تحمل خمش در آن به شدت کاهش می یابد . در واقع یک روش ترمیم بتون است که برای مقاطع بتونی که مقاومت خود را در اثر Izo-BTS خوردگی از دست داده اند و یا آنکه در هنگام اجرا در اثر عدم دقت کافی به مقاومت مورد نظر نرسیده اند و یا در اثر زلزله دچار تخریب شده اند ، استفاده می گردد . با توجه به مراحل کار در این روش ابتدا قسمتهای ضعیف مقطع بتونی که مقاومت لازم را ندارند توسط روشهای مکانیکی تخریب می گردد که لازمه آن، در ابتدای کار قبل از تخریب ، تعیین عمق دقیق نفوذ خوردگی در مقطع است که توسط آزمایشات خاصی این عمق و نواحی که ترمیم باید در آن انجام شود مشخص می گردد.ترمیم می گردد،این ماده در مرحله بعد سطح بتون توسط ماده ای خاص با نام IZOMET-BRM دارای شباهت زیادی با بتون می باشد اما قابلیتها و خواص آن چه به لحاظ مشخصات ساختمانی و چه به لحاظ مقاومت در برابر عوامل خوردگی بسیار بالاتر از بتونهای معمولی است .

تقویت سازه های بتونی

هدف در این روش مقاوم سازی ساز ه ها در مقابل زلزله و یا بالا بردن مقاومت سازه بنا به نیاز (مواردی همچون تغییر کاربری ساختمان و یا اشتباه درمحاسبات اولیه طراح ) می باشد . در این روش علاوه بر بدست آوردن مشخصات مورد نظر به لحاظ ساختمانی مسائل معماری ساختمان و زیبایی بنا نیز مد نظر است بدین صورت که در این روش بعد از اتمام کار سطح مقطع اجزا ساختمان تغییراتی نخواهد داشت . روش کار بدین صورت است که یک سری ورقهای فولادی با توجه به محاسبات انجام شده و مقاومت موردنظر ا ز خارج مقطع توسط یک نوع Steel-plates اپوکسی خاص به مقطع اضافه می گردد. طراحی این فولادها و مقادیر آن با توجه به محاسبات اولیه ساختمان و نیز مشخصاتی از مقطع که در نظر داریم به آن برسیم انجام می گیرد. مراحل انجام کار و نیز مواد استفاده شده به صورتی است که بعد از پایان مقطع جدید و قدیم به خوبی با یکدیگر کار می کنند .

جزئیات اجرایی ساختمان های بتنی

▪ دیوار چینی
۱- دیواری که از آجر فشاری یا با سنگ مخلوط و یا با مصالح دیگر با ملات ماسه سیمان یا ماسه آهک ویا ملات باتارد چیده شده .
۲- نمای دیوار را می توان از ابتدا با نما سازی خارجی پیوسته ساخته و به تدریج بالا ببرد بطوری که هر رگ آجر چینی قسمت جلوی کار آجر تراشیده گذارده و پشت آنرا از آجر فشاری یا مصالح دیگر می چینند.که ضخامت و مقاومت هر دیوار بستگی به نوع کار بری آن دارد .که در این ساختمان بیشتر دیوار چینی هابه وسیله آجر لفتون و آجر فشاری انجام گرفته.
▪ نحوه شمشه گیری
ابتدا بالای یکی از گوشه های هر قسمت ساختمان را مقدم گرفته و یک کروم گچی به یک زاویه نصب می شود، سپس شاغولی آن کروم را به پایین ارتباط داده کروم دیگری به پایین متصل می سازد بعد خط گونیا ۹۰ درجه را به زاویه های دیگر انتقال داده به طوری که عمل کروم بندی چهار گوشه هر قسمت را زیر پوشش دهد بعد ریسمانی به بالای هر قسمت روی کروم ها گرفته و هر دو متر یک کروم به زیر ریسمان به وجود آورده که این عمل پایین نیز انجام می شود بعد کروم های قسمت وسط و گوشه ها از بالا به پایین با شمشه چوبی یا آلومینیومی شمشه گچی گرفته روی کروم گچی که سرتاسر ارتفاع دیوار را در چند قسمت گرفته از ملات گچ و خاک یا ماسه سیمان می پوشانند.
▪ فرش کف ساختمان
برای عمل فرش کف ابتدا در گوشه های هر قسمت یک قطعه سنگ ساییده شده یا موزائیک یک اندازه بطوریکه تراز روی چهار نقطه باشد قرارمی دهندسپس ریسمانی نازک و محکم به اضلاع بسته و خط گونیا ۹۰ درجه را به گوشه ها انتقال میدهد.بعد ملات را کف آن پهن می کنند و کف را فرش می نمایند البته ریسمان ها را به ترتیب جا به جا می کنند .
▪ نحوه اجرای خط گونیا معماری
ابتدا از گوشه ها دو ریسمان عمود بر هم بسته و ۶۰ سانتی متر به یک طرف نشان گذارده ضلع همجوار را۸۰ سانتیمتر علامت گذاری می کنیم در این حالت خط ارتباط بین این دو باید ۱۰۰ سانتیمتر کامل باشد که در مغایرت ریسمان را جا بجا کرده تا نقطه ۱۰۰ سانتیمتر تکمیل گردد.که در این صورت زاویه ۹۰ درجه درست می شود .
▪ قرنیز
بر روی فرش موزائیک یا سنگ قسمتهای ساختمان قطعه سنگی به دیوارنسب مس شودکه قرنیز نا میده می شود . تا شستشوی کف و تنظیم گچ کاری دیوار ها آسان گردد.که در بیشتر ساختمان ها این قرنیز حدود ۱۰ سانتیمتر استفاده می شود که در این جا هم به همین صورت است.
▪ سفید کاری با گچ
هر بنا اول شمشه گیری آستر می شود در اینصورت گچ آماده را پس از الک کردن با الکی که سوراخ های آن نیم میلیمترمربع است الک نموده و سپس حدود سه لیتر آب سالم در ظرفی ریخته گچ الک شده را با دو دست آهسته در آب می پاشند تا اینکه ضخامت گچ به روی آبها برسد بلا فاصله با دست گچ های داخل آن را مخلوط نموده که این عمل بدست شاگرد استاد کار انجام می شود بعد به سرعت استاد کار خمیر گچ را با ماله آهنی روی دیوار آستر شده می گشد و بلا فاصله یک شمشه صاف روی آن می کشد تا ناهمواری های آن روی دیوار گرفته شود.
▪ کاشیکاری
هنگام شروع نصب کاشی به این صورت اقدام می گردد ابتدا خمیری از خاک رس تهیه و آن را می ورزند این خمیر در ظرفی نزدیک دست استاد کار آماده می ماند سپس با گچ یا سیمان یا ماسه یا خاک رس کوبیده شده زیر رگه اول کاشی در یک ضلع کنار دیوار شمشه کاملا تراز به وجود می آورد تا امکان چیدن رگه اول کاشی به وجود آید.
دو عدد کاشی دو سر ضلع مو قتا با فاصله حداقل ۱ سانتیمتر از دیوار قرار می دهند سپس ریسمانی نازک به بالای آن متصل نموده جلوی کاشی ها را از گل ورزیده شده موقتا بست می زنند بعد شمشه فلزی بسیار صاف جلوی کاشی در حال نصب قرار می دهند و بقیه کاشی ها را پشت شمشه چیده بعد با ریسمان کنترل می نمایند،
جلوی بند ها را از گل ورزیده شده کروم موقت گذارده سپس دوغاب سیمان رابه صورت رقیق محلول شده از ماسه پاک و سیمان معمولی آماده با ملاقه به آهستگی پشت کاشی ها را پر می کند تمام اضلاع را در رگ اول دور می گردانندتا امکان کنترل تمام زاویه ها وضلع ها ،گوشه ها و نبشه ها به عمل آیدکه چنان چه کنار ضلعی تکه های غیر استاندارد احتیاج شود کاشی های رگه اول را جا بجا نموده و تکه ها به کنار منتقل شود و دوغاب ریزی پشت انجام گیرد پس از کنترل اضلاع هر بنا رگه های دیگر را از اول شروع و انقدر تکرار می شود تا کاشیکاری در حد مطلوب به اتمام برسد پس از خودگیری کامل ملات کاشی ها دوغابی از رنگ کاشی با سیمان سفید ورنگ مشابه تهیه نموده و با پارچه یا گونی به لای بند ها مالیده و بعد از خشک شدن سطح کاشی ها را کاملا نظافت می نمایند ، در این هنگام نصب کاشی های دیواری خاتمه یافته و آماده فرش سرامیک کف می شود.
▪ نمای سیمانی
برای تزیین نمای خارجی سیمانی ساختمان در اولین مرحله ملاتی از ماسه پاک نه چندان درشت آماده کرده یعنی چهار پیمانه ماسه و یک پیمانه سیمان معمولی پرتلند را با آب به صورت ملات مخلوط در آورده سپس همان گونه که در قسمت شمشه گیری گفته شد ابتدا بالای دو سر یک ضلع دیوار را کروم بندی و روی کروم ها را رسیمان کشیده وهر یک متر کروم به دیوار متصل می نمایند ، سپس شاغولی کروم ها را به پایین دیوار داده عمل بالا را در پایین نیز انجام می دهند بعد فاصله کروم ها را از بالا به پایین با ملات ساخته شده فوق پرکرده وروی آن را شمشه کش می نمایند .
پس از اتمام کلیه کارها کروم بندی ها فاصله دو کروم را با همان ملات پر کرده شمشه صافی را از پایین به بالا روی ملات ها کشیده تا روی شمشه صاف کردن این عمل را آستر می نامند ، پس از تمام شدن کل طول دیوار خاک و پودر سنگ را با سیمان بطور نصبی مخلوط نموده یعنی برای سه پیمانه از دو مخلوط یک پیمانه سیمان سفید یا معمولی را با آب مخلوط کرده تاخمیری نسبتا رقیق تهیه شود سپس خمیر را با کمچه آهنی یا چوبی روی آسترها مالیده و با پاشیدن آن به وسیله قلم مو روی آن را با تخته ماله های چو بی ماساژ داده تا زیر تخته ها صاف و موج آن گرفته شود چنانچه بنا به تشخیص استاد کار احتیاجی به خط کشی وبه فرم های مختلف داشته باید پس از اتمام نرمه کشی ذکر شده آماده خط کشی و شیار زنی شده است پس از خاتمه یافتن کل آستر ونرمه کشی تزیین رویه آن با مصالح ورنگهای مختلف امکان پذیر است.
▪ تیرچه بلوک
برای اجراء سقف تیرچه بلوک ابتدا تیرچه های ساخته شده از میله گرد آجدار و زیر آن از فوندوله های سفال یا بتون است را به بالای ساختمان حمل می نمایند سپس زیر تیرچه ها به فاصله های حداکثر ۱۲۰ سانتیمتر چوب کشی نموده و به وسیله شمعها فلزی یا چوبی بار سقف به زمین منتقل می شودسپس بلوکه های که از سفال یا سیمان و ماسه تهیه شده است در فاصله تیرچه ها چیده می شود و وسط دهانه را مقداری که نبایداز کل عرض دهانه کمتر باشد بالا گرفته این بالازدگی به منظور خستگی بتون سقف در نظر گرفته می شود و آن را در اصطلاح معماری چتر می گویند چتر فوق پس از چند سال خستگی بتون و تحمل فشار به صورت صاف در خواهد آمد در پایان آرماتور تقسیم فشار در جهت خلاف تیرچه روی بلوکه ها با فاصله حداقل ۴۰ سانتیمترنصب ورودی سقف را از بتون سالم پر می سازند تا موقعی که روی بلوکه ها بتون ریزی شود .هنگام بتون ریزی نیز ویبراتوربرای ارتعاش و دفع هوای بتون الزامی است و اگر نبود با قطعه چوبی به صورت تخماق به بتون ضربه می زنندتا هوای بتون خارج شود و نیز فشرده گردد. بتون نام برده تا ۱۲ روز نیاز به آب پاشی دارد و هنگامی که ترک های سطحی روی بتون دیده شود به وسیله دوغاب سیمان پر می شود ترک ها نیز به مقاومت سقف آسیبی نمی رساند .
▪ سقفهای کاذب
سقف کاذب یعنی سقف دوم که در مقابل فشار ضعیف ساخته می شود و معمولا زیر طاق به وجود می آید زیرا کانال کشی ها لوله های برق و غیره از زیر سقف عبور می نماید به این منظور شاخه های فلزی از سقف به پائین ارتباط داده می شودبعد ازاتمام وکنترل کلیه کانالها لوله ها وغیره با آهن های سپری یا نبشی یک سقف کاذب زیر کانالها به وجود می آورندکه آنها نیز به نوبه خود به شاخه های پائین آمده متصل می گردد. پس از کنترل آهن کشی ها تورفلزی مخصوص بنام رابیز را با سیم های نرم آرماتور بندی به آهن کشی های سقف کاذب پیوسته می سازند در خاتمه روی آن را از یک قشر خاک و گچ به ضخامت حداقل یک سانتیمتر می پوشاننددر این صورت زیر سقف کاذب شمشه کاری می شود وسقف را برای سفید کاری و گچ بری آماده می سازند

ریپورتر
27th March 2010, 03:03 PM
فرسودگی بتن

علل مختلفی که باعث فرسودگی و تخریب سازه های بتنی می شوند - علائم هشدار دهنده که کار مرمت را الزامی می دارند.
۱- علل فرسودگی و تخریب سازه های بتنی (CAUSES OF DETERIORATIONS)
علل مختلفی که باعث فرسودگی و تخریب سازه های بتنی می شود همراه با علائم هشدار دهنده دیگری که کار تعمیرات را الزامی می دارند، در نخستین بخش از کتاب مورد بررسی و تحلیل قرار می گیرند:
۱ـ۱- نفوذ نمکها (INGRESS OF SALTS)
نمکهای ته نشین شده که حاصل تبخیر و یا جریان آبهای دارای املاح می باشند و همچنین نمکهایی که توسط باد در خلل و فرج و ترکها جمع می شوند، هنگام کریستالیزه شدن می توانند فشار مخربی به سازه ها وارد کنند که این عمل علاوه بر تسریع و تشدید زنگ زدگی و خوردگی آرماتورها به واسطه وجود نمکهاست. تر وخشک شدن متناوب نیز می تواند تمرکز نمکها را شدت بخشد زیرا آب دارای املاح، پس از تبخیر، املاح خود را به جا می گذارد.


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/Aban/06/0000197%20(1).jpg
۱ـ۲- اشتباهات طراحی (SPECIFICATION ERRORS)
به کارگیری استانداردهای نامناسب و مشخصات فنی غلط در رابطه با انتخاب مواد، روشهای اجرایی و عملکرد خود سازه، می تواند به خرابی بتن منجر شود. به عنوان مثال استفاده از استانداردهای اروپایی و آمریکایی جهت اجرای پروژه هایی در مناطق خلیج فارس، جایی که آب و هوا و مواد و مصالح ساختمانی و مهارت افراد متفاوت با همه این عوامل در شمال اروپا و آمریکاست، باعث می شود تا دوام و پایایی سازه های بتنی در مناطق یاد شده کاهش یافته و در بهره برداری از سازه نیز با مسائل بسیار جدی مواجه گردیم.
۱ـ۳- اشتباهات اجرایی (CON STRUCTION ERRORS)
کم کاریها، اشتباهات و نقصهایی که به هنگام اجرای پروژه ها رخ می دهد، ممکن است باعث گردد تا آسیبهایی چون پدیدهء لانه زنبوری، حفره های آب انداختگی، جداشدگی، ترکهای جمع شدگی، فضاهای خالی اضافی یا بتن آلوده شده، به وجود آید که همگی آنها به مشکلات جدی می انجامند.
این گونه نقصها و اشکالات را می توان زاییدهء کارآئی، درجهء فشردگی، سیستم عمل آوری، آب مخلوط آلوده، سنگدانه های آلوده و استفاده غلط از افزودنیها به صورت فردی و یا گروهی دانست.
۱ـ۴- حملات کلریدی (CHLORIDE ATTACK)
وجود کلرید آزاد در بتن می تواند به لایهء حفاظتی غیر فعالی که در اطراف آرماتورها قرار دارد، آسیب وارد نموده و آن را از بین ببرد.
خوردگی کلریدی آرماتورهایی که درون بتن قرار دارند، یک عمل الکتروشیمیایی است که بنا به خاصیتش، جهت انجام این فرآیند، غلظت مورد نیاز یون کلرید، نواحی آندی و کاتدی، وجود الکترولیت و رسیدن اکسیژن به مناطق کاتدی در سل (CELL)خوردگی را فراهم می کند.
گفته می شود که خوردگی کلریدی وقتی حاصل می شود که مقدار کلرید موجود در بتن بیش از ۶/۰ کیلوگرم در هر متر مکعب بتن باشد. ولی این مقدار به کیفیت بتن نیز بستگی دارد.
خوردگی آبله رویی حاصل از کلرید می تواند موضعی و عمیق باشد که این عمل در صورت وجود یک سطح بسیار کوچک آندی و یک سطح بسیار وسیع کاتدی به وقوع می پیوندد که خوردگی آن نیز با شدت بسیار صورت می گیرد. از جمله مشخصات (FEATURES ) خوردگی کلریدی، می توان موارد زیر را نام برد:
الف- هنگامی که کلرید در مراحل میانی ترکیبات (عمل و عکس العمل) شیمیایی مورد استفاده قرار گرفته ولی در انتها کلرید مصرف نشده باشد.
ب- هنگامی که تشکیل همزمان اسید هیدروکلریک، درجه PH مناطق خورده شده را پایین بیاورد. وجود کلریدها هم می تواند به علت استفاده از افزودنیهای کلرید باشد و هم می تواند ناشی از نفوذیابی کلرید از هوای اطراف باشد.
فرض بر این است که مقدار نفوذ یونهای کلریدی تابعیت از قانون نفوذ FICK دارد. ولی علاوه بر انتشار (DIFFUSION) به نفوذ(PENETRATION) کلرید احتمال دارد به خاطر مکش موئینه (CAPILLARY SUCTION) نیز انجام پذیرد.
۱ـ۵- حملات سولفاتی (SULPHATE ATTACK)
محلول نمکهای سولفاتی از قبیل سولفاتهای سدیم و منیزیم به دو طریق می توانند بتن را مورد حمله و تخریب قرار دهند. در طریق اول یون سولفات ممکن است آلومینات سیمان را مورد حمله قرار داده و ضمن ترکیب، نمکهای دوتایی از قبیل:THAUMASITE و ETTRINGITEتولید نماید که در آب محلول می باشند. وجود این گونه نمکها در حضور هیدروکسید کلسیم، طبیعت کلوئیدی(COLLOIDAL) داشته که می تواند منبسط شده و با ازدیاد حجم، تخریب بتن را باعث گردد. طریق دومی که محلولهای سولفاتی قادر به آسیب رسانی به بتن هستند عبارتست از: تبدیل هیدروکسید کلسیم به نمکهای محلول در آب مانند گچ (GYPSUM) و میرابلیت MIRABILITE که باعث تجزیه و نرم شدن سطوح بتن می شود و عمل LEACHING یا خلل و فرج دار شدن بتن به واسطه یک مایع حلال، به وقوع می پیوند.

سازه‌های بتنی

سازه بتنی سازه‌ای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد. در ساختمان در صورت استفاده از بتن آرمه در قسمت ستون‌ها و شاه تیر‌ها و پی، آن ساختمان یک سازه بتنی محسوب می‌شود.


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/Aban/06/0000197%20(2).jpg
مزایای سازه های بتنی

۱- ماده اصلی بتن که شن و ماسه می باشد ارزان و قابل دسترسی است.
۲- سازه های بتنی که مطابق با اصول آیین نامه ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه های ساخته شده با مصالح دیگر هستند.
۳- به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه های بتنی نظیر پل، ستون و ... به اشکال مختلف میسر است.
۴- سازه های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

روش های طراحی سازه های بتن آرمه

به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است. چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت. لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه ها طلب می کنند. مهمترین ریشه ها و منابع این خطاها عبارتند از:
الف: بارهایی که در عمل به سازه وارد می شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.
ب: رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می شوند، تفاوت داشته باشد.
ج: مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.
د: ابعاد قطعات و محل واقعی میلگرد ها ممکن است دقیقا مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.
بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه های اساسی روش های طراحی در آمده است. به طور کلی طراحی سازه های بتن آرمه به سه روش زیر صورت می گیرد:
۱: تنش مجاز
۲: مقاومت نهایی
۳: روش طراحی بر مبنای حالات حدی

روش تنش مجاز

این روش که قبلا روش تنش بهره برداری یا روش تنش بار سرویس نامیده می شد، اولین روشی است که بصورت مدون برای طراحی سازه های بتن آرمه بکارگرفته شد. در این روش یک عضو سازه ای به نحوی طراحی می شود که تنش های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری های خطی مکانیک جامدات محاسبه می شوند، از مقادیر مجاز تنش ها تجاوز نکنند. منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند. این بارها توسط آیین نامه های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می شوند. در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می آید. تنش های مجاز مصالح توسط آیین نامه های محاسباتی تعیین می شوند. به عنوان مثال مطابق آیین نامه ACI مقدار تنش فشاری مجاز بتن f' c ۰٫۴۵می باشد.
بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:
۱: تعیین بارهای وارد بر سازه
۲: آنالیز سازه و تعیین تنش ها در مقاطع مختلف به کمک تئوری های کلاسیک اجسام الاستیک
۳: تعیین تنش های مجاز با استفاده از یک آیین نامه محاسباتی
۴: طراحی نهایی مقطع با این محدودیت که در هیچ نقطه ای از سازه تنش های ایجاد شده از تنش های مجاز تجاوز نکنند.
این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده ترین روش طراحی سازه های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است. مهمترین این نقاط ضعف عبارتند از:
الف: در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می کنند دارای ریشه ها و شدت های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.
ب: بتن ماده ای است که تنها تا تنش های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می کند. بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.
ج: به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالبا کمتر از مقداری است که با این روش محاسبه می شود.
تا سال ۱۹۵۶ میلادی روش تنش های مجاز مبنای محاسبات در آیین نامه ACI بود. این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد

روش مقاومت نهایی

روش مقاومت نهایی که در آیین نامه ACI به نام روش طراحی بر مبنای مقاومت موسوم است، حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه های بتن آرمه می باشد. روند طراحی در این روش را می توان به صورت زیر خلاصه نمود:
۱: باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می شود، بار حاصله را اصطلاحا بار ضریبدار یا بار نهایی می نامند.
۲: بارهای ضریبدار بر سازه اعمال می شوند و به کمک روش های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می شود. به این نیروی داخلی اصطلاحا مقاومت لازم گفته می شود. مقاومت لازم در یک مقطع شامل: مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.
۳: برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می آید. مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می دهد. مقاومت اسمی یک مقطع مشتمل است از: مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.
۴: طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.
روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه های بتن آرمه می باشد.

روش طراحی بر مبنای حالات حدی

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید. این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد. این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می باشد. در این روش نیاز های طراحی با مشخص کردن حالات حدی تعیین می شوند. منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته های طرح را تامین نمی کند. طراحی سازه با توجه به سه حالت حدی زیر صورت می گیرد:
۱: حالت حدی نهایی، که مربوط به ظرفیت باربری می شود.
۲: حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
۳: حالت حدی ترک خوردگی یا باز شدن ترک ها
علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شوند - علائم هشدار دهنده كه كار مرمت را الزامي مي دارند.
1- علل فرسودگي و تخريب سازه هاي بتني(CAUSES OF DETERIORATIONS)
علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شود همراه با علائم هشدار دهنده ديگري كه كار تعميرات را الزامي مي دارند، در نخستين بخش از كتاب مورد بررسي و تحليل قرار مي گيرند:

1-1- نفوذ نمكها (INGRESS OF SALTS)

نمكهاي ته نشين شده كه حاصل تبخير و يا جريان آبهاي داراي املاح مي باشند و همچنين نمكهايي كه توسط باد در خلل و فرج و تركها جمع مي شوند، هنگام كريستاليزه شدن مي توانند فشار مخربي به سازه ها وارد كنند كه اين عمل علاوه بر تسريع و تشديد زنگ زدگي و خوردگي آرماتورها به واسطه وجود نمكهاست. تر وخشك شدن متناوب نيز مي تواند تمركز نمكها را شدت بخشد زيرا آب داراي املاح، پس از تبخير، املاح خود را به جا مي گذارد.

1-2- اشتباهات طراحي (SPECIFICATION ERRORS)

به كارگيري استانداردهاي نامناسب و مشخصات فني غلط در رابطه با انتخاب مواد، روشهاي اجرايي و عملكرد خود سازه، مي تواند به خرابي بتن منجر شود. به عنوان مثال استفاده از استانداردهاي اروپايي و آمريكايي جهت اجراي پروژه هايي در مناطق خليج فارس، جايي كه آب و هوا و مواد و مصالح ساختماني و مهارت افراد متفاوت با همه اين عوامل در شمال اروپا و آمريكاست، باعث مي شود تا دوام و پايايي سازه هاي بتني در مناطق ياد شده كاهش يافته و در بهره برداري از سازه نيز با مسائل بسيار جدي مواجه گرديم.

1-3- اشتباهات اجرايي (CON STRUCTION ERRORS)

كم كاريها، اشتباهات و نقصهايي كه به هنگام اجراي پروژه ها رخ مي دهد، ممكن است باعث گردد تا آسيبهايي چون پديدهء لانه زنبوري، حفره هاي آب انداختگي، جداشدگي، تركهاي جمع شدگي، فضاهاي خالي اضافي يا بتن آلوده شده، به وجود آيد كه همگي آنها به مشكلات جدي مي انجامند.
اين گونه نقصها و اشكالات را مي توان زاييدهء كارآئي، درجهء فشردگي، سيستم عمل آوري، آب مخلوط آلوده، سنگدانه هاي آلوده و استفاده غلط از افزودنيها به صورت فردي و يا گروهي دانست.

1-4- حملات كلريدي (CHLORIDE ATTACK)

وجود كلريد آزاد در بتن مي تواند به لايهء حفاظتي غير فعالي كه در اطراف آرماتورها قرار دارد، آسيب وارد نموده و آن را از بين ببرد.
خوردگي كلريدي آرماتورهايي كه درون بتن قرار دارند، يك عمل الكتروشيميايي است كه بنا به خاصيتش، جهت انجام اين فرآيند، غلظت مورد نياز يون كلريد، نواحي آندي و كاتدي، وجود الكتروليت و رسيدن اكسيژن به مناطق كاتدي در سل (CELL)خوردگي را فراهم مي كند.
گفته مي شود كه خوردگي كلريدي وقتي حاصل مي شود كه مقدار كلريد موجود در بتن بيش از 6/0 كيلوگرم در هر متر مكعب بتن باشد. ولي اين مقدار به كيفيت بتن نيز بستگي دارد.
خوردگي آبله رويي حاصل از كلريد مي تواند موضعي و عميق باشد كه اين عمل در صورت وجود يك سطح بسيار كوچك آندي و يك سطح بسيار وسيع كاتدي به وقوع مي پيوندد كه خوردگي آن نيز با شدت بسيار صورت مي گيرد. از جمله مشخصات (FEATURES ) خوردگي كلريدي، مي توان موارد زير را نام برد:
(الف) هنگامي كه كلريد در مراحل مياني تركيبات (عمل و عكس العمل) شيميايي مورد استفاده قرار گرفته ولي در انتها كلريد مصرف نشده باشد.
(ب) هنگامي كه تشكيل همزمان اسيد هيدروكلريك، درجه PH مناطق خورده شده را پايين بياورد. وجود كلريدها هم مي تواند به علت استفاده از افزودنيهاي كلريد باشد و هم مي تواند ناشي از نفوذيابي كلريد از هواي اطراف باشد.
فرض بر اين است كه مقدار نفوذ يونهاي كلريدي تابعيت از قانون نفوذ FICK دارد. ولي علاوه بر انتشار (DIFFUSION) به نفوذ (PENETRATION) كلريد احتمال دارد به خاطر مكش موئينه (CAPILLARY SUCTION) نيز انجام پذيرد.

1-5- حملات سولفاتي (SULPHATE ATTACK)

محلول نمكهاي سولفاتي از قبيل سولفاتهاي سديم و منيزيم به دو طريق مي توانند بتن را مورد حمله و تخريب قرار دهند. در طريق اول يون سولفات ممكن است آلومينات سيمان را مورد حمله قرار داده و ضمن تركيب، نمكهاي دوتايي از قبيل:THAUMASITE و ETTRINGITEتوليد نمايد كه در آب محلول مي باشند. وجود اين گونه نمكها در حضور هيدروكسيد كلسيم، طبيعت كلوئيدي(COLLOIDAL) داشته كه مي تواند منبسط شده و با ازدياد حجم، تخريب بتن را باعث گردد. طريق دومي كه محلولهاي سولفاتي قادر به آسيب رساني به بتن هستند عبارتست از: تبديل هيدروكسيد كلسيم به نمكهاي محلول در آب مانند گچ (GYPSUM) و ميرابليت MIRABILITE كه باعث تجزيه و نرم شدن سطوح بتن مي شود و عمل LEACHING يا خلل و فرج دار شدن بتن به واسطه يك مايع حلال، به وقوع مي پيوند.

1-6- حريق (FIRE)

سه عامل اصلي وجود دارد كه مي توانند مقاومت بتن را در مقابل حرارت بالا تعيين كنند. اين عوامل عبارتند از:
(الف) توانايي بتن در مقابله با گرما و همچنين عمل آب بندي، بدون اينكه ترك، ريختگي و نزول مقاومت حاصل گردد.
(ب) رسانايي بتن (CONDUCTIVITY)
(ج) ظرفيت گرمايي بتن(HEAT CAPACITY)
بايد توجه داشت دو مكانيزم كاملاً متضاد انبساط (EXPANSION) و جمع شدگي مسؤول خرابي بتن در مقابل حرارت مي باشند. در حالي كه سيمان خالص به محض قرار گرفتن در مجاورت حرارتهاي بالا، انبساط حجم پيدا مي كند، بتن در همين شرايط يعني در معرض حرارتهاي (دماي) بالا، تمايل به جمع شدگي و انقباض نشان مي دهد. چون حرارت باعث از دست دادن آب بتن مي گردد، نهايتاً اينكه مقدار انقباض در نتيجه عمل خشك شدن از مقدار انبساط فراتر رفته و باعث مي شود جمع شدگي حاصل شود و به دنبال آن ترك خوردگي و ريختگي بتن به وجود مي آيد .به علاوه در درجه حرارت 400 درجه سانتي گراد، هيدروكسيد كلسيم آزاد بتن كه در سيمان پر تلند هيدراته شده موجود است، آب خود را از دست داده و تشكيل اكسيد كلسيم مي دهد. سپس خنك شدن مجدد و در معرض رطوبت قرار گرفتن باعث مي شود، تا از نو عمل هيدراته شدن حاصل شود كه اين عمل به علت انبساط حجمي موجب بروز تنشهاي مخرب مي گردد. هچنين انبساط و انقباض نا هماهنگ و متمايز (DIFFERENTIAL EXPANSION AND CONTRACTION)مواد تشكيل دهنده بتن مسلح مانند آرماتور، شن، ماسه و ... مي توانند در ازدياد تنشهاي تخريبي نقش مؤثري داشته باشند.

1-7- عمل يخ زدگي (FROST ACTION)

براي بتنهاي خيس، عمل يخ زدگي يك عامل تخريب مي باشد، چون آب به هنگام يخ زدن ازدياد حجم پيدا كرده و باعث توليد تنشهاي مخرب دروني شده و لذا بتن ترك مي خورد. تركها و درزهائيي كه نتيجه يخ زدگي و ذوب متناوب مي باشند، باعث مي گردند سطح بتن به صورت پولكي درآمده و بر اثر فرسايش، خرابي عمق بيشتري يابد بنابراين عمل يخ ز دگي بتن و ميزان تخريب حاصله، بستگي به درجه تخلخل و نفوذپذيري بتن دارد كه اين موضوع علاوه بر تأثير تركها و درزهاست.

1-8- نمكهاي ذوب يخ (DE-ICING SALTS)

اگر براي ذوب نمودن يخ بتن، از نمكهاي ذوب يخ استفاده شود، علاوه بر خرابيهاي حاصله از يخ زدگي، ممكن است همين نمكها نيز باعث خرابي سطحي بتن گردند. چون باور آن است كه خرابيهاي حاصل از نمكهاي ذوب يخ، در نتيجه يك عمل فيزيكي به وقوع مي پيوندد، غلظت نمكها، موجود بودن آبي كه قابليت يخ زدگي داشته باشد و در كل فشارهاي هيدروليكي و غشايي (OSMOTIC) نقش بسيار مهمي در دامنه و وسعت خرابيها ايفا مي كنند.

1-9- عكس العمل قليايي سنگدانه ها (ALKALI-AGGREGATE REACTION)

در اين قسمت مي توان از واكنشهاي "قليايي- سيليكا" و "قليايي- كربناتها" نام برد.
عكس العمل قليايي – سيليكا(ALKALI-SILICA) عبارتست از: ژلي كه از عكس العمل بين هيدروكسيد پتاسيم و سيليكاي واكنش پذير موجود در سنگدانه حاصل مي شود. بر اثر جذب آب، اين ژل انبساط پيدا كرده و با ايجاد تنشهايي منجر به تشكيل تركهاي دروني در بتن مي شود. واكنش قليايي –كربنات، بين قلياهاي موجود در سيمان و گروه مشخصي از سنگهاي آهكي (DOLOMITIC) كه در شرايط مرطوب قرار مي گيرند، به وقوع مي پيوندد. در اينجا نيز انبساط حاصله باعث مي شود تا تركهايي ايجاد شود يا در مقاطع باريك خميدگيهايي به وجود آيد.

1-10- كربناسيون(CARBONATION)

گاه لايه حفاظتي كه در مجاورت آرماتور داخل بتن موجود است، در صورت كاهش PH بتن اطراف، به كلي آسيب ديده و از بين مي رود. بنابراين نفوذ دي اكسيد كربن از هوا، عكس العملي را با بتن آلكالين ايجاد مي نمايد كه حاصل آن كربنات خواهد بود و در نتيجه درجه PH بتن كاهش مي يابد. همچنان كه اين عمل از سطح بتن شروع شده و به داخل بتن پيشروي مي نمايد؛ آرماتور بتن تحت تأثير اين عمل دچار خوردگي مي گردد. علاوه بر خوردگي، دي اكسيد كربن و بعضي اسيدهاي موجود در آب دريا مي توانند هيدروكسيد كلسيم را در خود حل كرده و باعث فرسايش سطح بتن گردند.

1-11- علل ديگر (OTHER CAUSES)

علل بسيار ديگري نيز باعث آسيب ديدگي و خرابي بتن مي شوند كه در سالهاي اخير شناسايي شده اند. بعضي از اين عوامل داراي مشخصات خاصي بوده و كاربرد بسيار موضعي دارند. مانند تأثير مخرب چربيها بر كف بتن كشتارگاهها، مواد اوليه در كارخانه ها و كارگاههاي توليدي، آسيب حاصله از عوارض مخرب فاضلابها و مورد استفاده قرار دادن سازه هايي كه براي منظورها و مقاصد ديگري ساخته شده باشند، نه آنچه كه مورد بهره برداري است. مانند تبديل ساختمان معمولي به سردخانه، محل شستشو، انباري، آشپزخانه، كتابخانه و غيره. با اين همه اكثر آنها را مي توان در گروههاي ذيل طبقه بندي نمود:
(الف) ضربات و بارههاي وارده (ناگهاني و غيره) در صورتي كه موقع طراحي سازه براي اين گونه بارگذاريها پيش بينيهاي لازم صورت نگرفته باشد.
(ب) اثرات جوي و محيطي
(پ) اثرات نامطلوب مواد شيميايي مخرب

ریپورتر
27th March 2010, 03:03 PM
روش طراحی بر مبنای حالات حدی

2- عمليات ترميمي(REMEDIAL- ACTION)
پس از اينكه عامل يا عوامل سازه دقيقاً مشخص شد، مهندسين مسؤول با در نظر گرفتن هزينه اقدامات لازم، عملياتي را كه براي استفاده و ادامه بهره برداري از سازه براي مدت مورد نظر ضروري است، به كارفرما ارائه مي دهند. اين عمليات ممكن است شامل خراب كردن و از بين بردن كامل سازه و ساخت مجدد آن باشد يا اينكه تعميرات اساسي صورت گيرد و يا اينكه روشهايي اتخاذ شود تا پيشروي خرابي و فرسودگي را در سازه كاهش دهد. البته اين امر يعني كاستن از سرعت پيشرفت خرابي در سازه، در مواقعي ضرورت مي يابد كه امكان تعميرات اساسي پيشگيري كننده وجود نداشته باشد، مانند تخريبي كه علت اصلي آن عكس العمل واكنش قليايي- سيليكا(ALKALI- SILICA) مي باشد.
در هر حال اگر در مراحل تشخيص و ارائه راه حل، تعمير سازه به عنوان تصميم مقتضي، اتخاذ شده باشد، با در نظر گرفتن نوع سازه بتني، طرق متعددي براي اجراي اين تعميرات موجود مي باشد كه اعم آنها عبارتند از:
(الف) جايگزين نمودن تمام يا قسمتي از المانهاي سازه
(ب) تزريق و تلقيح تركها
(پ) چسباندن المانهاي فلزي كمكي (مانند آرماتور، صفحات فلزي، بخيه و …)
(ث) پوششها
از آنجا كه با توجه به موقعيت و موضع مناطق تحت تعمير سازه، ممكن است عمل تعمير در شرايط كاملاً خشك، نيمه خشك، و داخل آب (مغروق) انجام گيرد، مطالبي كه در پي خواهد آمد، شامل تمامي روشهاي مرتبط و معمول در صنعت بتن مي باشد.

2-1- آماده سازي سطوح(SURFACE PREPARATION)

قبل از انجام و اعمال سيستم تعميري، سطوح بتن مادر (قديم) بايستي كاملاً آماده گردد. از جمله اهداف اصلي آماده سازي سطوح را مي توان موارد زير ذكر نمود:
(الف) بر طرف نمودن تمامي تكه ها و قطعه هاي نا مناسب و نرم و جدا شدهء بتني جهت ايجاد سطحي مناسب با مقاومت كافي.
(ب) تميز نمودن تمامي سطوح از آلودگيها. اين آلودگيها مانع از ايجاد چسبندگي لازم بين لايه تعميري و بتن مادر مي گردند.
(پ) آشكار نمودن و در دسترس قرار دادن طول و يا عمق آرماتورها براي تميز كردن، تقويت، پوشش و…
(ت) ازدياد درجه زبري سطوح بتني جهت ايجاد سطح تماس بيشتر بين بتن مادر و لايه تعميري و همچنين ازدياد قفل و بست مكانيكي.
2-1-1 تميز نمودن با اسيد، شستن با اسيد، اسيد خراشي(ACID ETCHING)
اين روش، علاوه بر تميز نمودن، درجه زبري سطح را نيز افزايش مي دهد. با توجه به اهداف تعميرات مورد نظر، اسيد هيدروكلريك رقيق شده را روي سطح بتني ريخته و سپس با برس زبر سطح مذكور را با شدت مي سايند، تا زماني كه عمل ايجاد حباب متوقف گردد. پس از كاربرد اسيد مذكور، سطوح بتني سريعاً با آب شستشوي كامل داده شده، به طريقي كه آب بر روي سطح جاري گردد و آلودگيهاي اسيدي را از بين ببرد. درجه زبري سطح بتن بستگي خواهد داشت به قدرت اسيد و عمل برس زدن. از آنجا كه اسيد مذكور براي پوست ضرر دارد، لازم است كه اقدامات ايمني مناسبي جهت اجتناب از آلودگي به اسيد و همچنين تهويه مناسب صورت گيرد. لازم به يادآوري است كه علاوه بر اسيد هيدروكلريك، اسيد ارتوفسفريك نيز براي تميز كردن سطوح بتني به كار گرفته شده است.
2-1-2 برس زدن (WIRE BRUSHING)
در نقاطي كه قطعات و تكه هاي شل روي سطوح بتني چسبيده است، استفاده از برس زدن جهت تميز نمودن سطوح، از معمولترين روشها مي باشد. مثلاً در مناطقي كه جلبكها و گياهان دريايي روييده اند اين روش به كار مي رود. نقطه ضعف اين روش كند بودن آن مي باشد و عملاً وقت زيادي جهت حصول نتايج مطلوب صرف مي شود.
2-1-3 چكش زدن(JACKHAMMERING)
اين روش در مواقعي مورد استفاده قرار مي گيرد كه علاوه بر برطرف نمودن تكه ها و قطعات شل، ايجاد زبري لازم بر روي سطوح از اهداف آماده سازي باشد.
2-1-4 سند بلاست و گريت بلاست (شن و ساچمه پاشي)(SAND OF GRIT BLASTING)
اين روش يكي از روشهاي بسيار مناسب است، چرا كه علاوه بر تميز نمودن سطوح بتني، طريقه ايده آلي نيز جهت تميز نمودن سطوح آرماتورها ساير فلزات از زنگ زدگي و ساير آلودگيها به شمار مي آيد. اين روش علاوه بر تميز نمودن سطح، درجه زبري سطوح را نيز افزايش مي دهد. بايستي توجه داشت كه گرد خاك حاصله در اين روش آن را بر جاهاي بسته مناسب نمي سازد.
2-1-5 وترجت (آب فشاري) با مواد ساينده و بدون آن (WATER JETTING WITH OR WITHOUT ABRASIVE)
اين روش كه وترجت با فشار بسيار بالا مي باشد، هم مي تواند به همراه مواد ساينده از قبيل شن و ساچمه به كار كرفته شود و هم بدون مواد ساينده. از امتيازات اين روش آن است كه بدون توليد گرد و خاك، سطوح بسيار تميزي ايجاد مي كند كه علت اين امر وجود آب مي باشد. بايستي توجه داشت كه در اين روش رعايت موارد ايمني از اهميت ويژه اي برخوردار است.
2-1-6 روشهاي ديگر(OTHER METHODS)
علاوه بر روشهايي كه شرح آنها گذشت، روشهايي نيز از قبيل جت آتش (فواره آتش)، عمل آوري توسط تفنگهاي سوزني، سائيدن، اسكراپر دستي و دستگاههاي دوار برقي، موجود مي باشد كه بسته به شرايط محيط، سطح بتن تعميري و انتظاراتي كه از تعميرات مي رود، مورد استفاده واقع مي شوند.

2-2 طرق مختلف ترميم(REPAIR TECHIQUES)

در اين قسمت، روشهاي مختلف ترميمي كه در صنعت بتن معمول هستند، شرح داده مي شوند. اين روشها شامل پر كردن تركها، جايگزين نمودن قسمتهايي از سازه كه از دست رفته اند، اضافه نمودن قطعات جديدي براي سازه موجود، اعمال حفاظهاي سطحي و همچنين تعميراتي است كه صرفاً جنبه زيباسازي دارند.
2-2-1 تزريق تركها (CRACK INJECTION)
تركهاي باريكي را مي توان به طريقه تزريق رزينهاي اپوكسي پر نمود. در اين روش، نقاط تزريق متناوباً با فواصل كوتاهي در طول ترك قرار داده شده و سپس سطح ترك كاملاً آب بند(SEAL) مي شود تا از فرار و نشست رزين در مدت تزريق جلوگيري گردد. روش تزريق به اين صورت است كه رزين از يك نقطه تزريق شده و سپس اطمينان حاصل مي گردد كه عمل تزريق تا نقطه بعدي كاملاً صورت گرفته و خلل و فرجهاي اطراف پر شده است. در اين روش، مواد تزريقي به صورت مداوم (لاينقطع) به ترتيب از نقاط مختلف تزريق، پمپ مي شود تا اطمينان حاصل گردد كه علاوه بر مسير اصلي ترك، كليه خلل و فرجها نيز كاملاً پر شده اند.
در صورتي كه كه ابتدا و انتهاي ترك در يك سطح (از جهت ارتفاع) نباشد تزريق بايستي از پايين ترين نقطه آغاز و به بالاترين نقطه ختم گردد؛ و همچنين براي حصول اطمينان از پر شدن مطلوب ترك از مواد تزريقي، از لوله هاي شفاف استفاده مي شود.
2-2-2 قنداق كردن(JACKETING)
براي اينكه مقاومت بتن را در مقابل عوامل مخرب و مزاحمي كه باعث خرابي و خرد شدن آن مي شود، بالا بريم، مي توانيم از مواردي از قبيل فلزات، لاستيك، پلاستيك و يا بتن با مقاومت بالا، جهت پوشش دادن سطح بتني مورد نظر استفاده كنيم. عامل پوششي (حفاظتي) را مي توان با استفاده از ميخ، پيچ، پرچ، چسب، مواد و يا عمل ثقلي روي سطح بتن مورد نظر تثبيت نمود. معمولترين بخشهايي كه در آنها از سيستمJACKETING استفاده مي شود، عبارتند از: تانكها و مخازن، لوله ها، سرريزها، شمعها و غيره كه در معرض عوامل ساينده و يا خورنده قرار دارند.
2-2-3 بتن با سنگدانه از پيش آكنده (PREPLACED AGGREGATE CONCRETE)
در اين روش، سنگدانه هايي كه از نظر دانه بندي داراي شكاف هستند (GAP- GRADED) در داخل حفره ها و يا كانالهايي قرار داده مي شوند و سپس با استفاده از آب، اين سنگدانه ها را كاملاً اشباع مي نمايند (در بعضي اوقات خود كانال و يا حفره از قبل پر از آب مي باشد). سپس ملات و يا دوغاب از پايين ترين نقطه به وسيله پمپ وارد سيستم مي شود، به گونه اي كه آب موجود را جا به جا مي نمايد. اين روش براي محلهايي كه در دسترس نيستند مانند بتنهاي مغروق، بسيار مناسب مي باشد. در مواقعي اين روش به همراه روش قنداق كردن JACKETING نيز مورد استفاده قرار مي گيرد. از اين روش در موارد تعمير شمعها، پايه ها،ستونها،ديوارهاي حائل ABUTMENTS,RETAININGWALLSBASEPLATES, (كف ستون)، تونلها و DAWS استفاده مي گردد.
اگرچه چسبندگي خوب و جمع شدگي كم (LOW SHRINKAGE) از جمله خصوصيات اين روش مي باشد، معذالك خلل و فرجهايي در داخل ين بتن يافت مي شود. با توجه به مهارت و تجهيزات فني پيشرفته كه از ضرورتهاي به كارگيري اين روش مي باشد؛ كار بايستي حتماً به وسيله يا تحت نظر پيمانكاران متخصص انجام گيرد.
2-2-4 لايه هاي سطحي (THIN OR REGULAR RESURFACING)
در اين روش يك لايه يكنواخت (UNIFORM) از مواد تعميري بر روي سطح گسترده اي از بتن اعمال مي شود. اين شيوه بيشتر در تعميرات سطحي كفها و محلهاي عبوري كه از نظر سازه اي يعني استحكام، داراي مقاومت كافي بوده ولي سطح بتن دچار فساد و خرابي و خردشدگي شده است، به كار مي رود.
اعمال يك لايه نازك روي سطح (THIN RESURFACING) را اغلب TOPPING (لايهء رويي) مي نامند كه در اين صورت ضخامت لايه كمتر از پنج سانتيمتر مي باشد. همچنين لايه هاي تعميري كه ضخامت آنها بيش از 5cm باشد، لايه منظم سطحي (REGULAR RESURFACING) ناميده مي شوند.
2-2-5 بتن پاشي (SHOTCRETING)
به روش شاتكريت يا بتن پاشي، روش اعمال بتن يا ملات به طريقه هوايي يا پنوماتيك (PNEUMATIC) نيز اطلاق مي گردد. در اين روش بتن يا ملات با استفاده از فشار هوا به داخل حفره ها، كانالها، قالبها … و سطوحي كه بايستي تعمير گردند، پرتاپ مي شود. اگر اندازه سنگدانه مخلوط كوچكتر از 6 ميليمتر باشد، روش را گانيت (GUNITING) مي خوانند.
اصولاً روش بتن پاشي و يا شاتكريت به دو گروه «تر» و «خشك» تقسيم مي شود. در روش «تر»، عمل مخلوط شدن آب، سيمان و سنگدانه قبلاً مخلوط شده و سپس مواد مخلوط شده با فشار پرتاپ مي گردند. ولي در روش «خشك»، پس از اينكه سيمان و سنگدانه مخلوط شدند، اين مخلوط با فشار پرتاپ شده و در سر نازل (شيلنگ) آب به مخلوط اضافه مي گردد. معمولاً اين سيستم در جاهايي به كار گرفته مي شود كه سطح تعميري وسيع بوده و عمق تعمير در حدود 10 سانتيمتر باشد. همچنين در جاهايي كه عمل آوري لايه تعميري مشكل بوده و يا روشهاي عمل آوري معمول در صنعت بتن، اثر مطلوب را نداشته باشند، مي توان از اين سيستم بهره جست.
نكته اي را كه بايستي در اين روش به خاطر داشت، آن است كه سطح نهايي تعميرات صاف نبوده و بسته به اندازه سنگدانهء مخلوط، داراي زبري و ناهمواري است.
2-2-6 بخيه زني (STITCHING)
اين روش در موقعي به كار گرفته مي شود كه تركهاي زيادي روي سطح بتن ظاهر شده و بايستي براي به دست آوردن و حفظ مقاومت سازه اي، آنها را مسدود كنيم. در اين روش المانهاي "U" شكل با پايه هاي كوتاه در عرض تركها در درون حفره هاي تعبيه شده، قرار گرفته (ANCHORED يا مهاري) و سپس اين حفره ها با ملاتهاي روان يا دوغاب كه خاصيت جمع شدگي ندارند، پر مي شود. براي جلوگيري از تمركز تنشها، المانهايي با اندازه هاي متفاوت در جهات مختلف از نظر صفحه تركها (PLANE)، در نظر گرفته مي شود. نكته اي كه بايستي به هنگام به كارگيري اين روش در نظر داشت؛ آن است كه هرچه تركها بيشتر سخت (STIFF) گردند،احتمال به وجود آمدن ترك در جاهاي ديگر بيشتر مي شود. چارهء كار، آن است كه يك لايه بتن مسطح بر روي محلهايي كه بحراني هستند، اعمال گردد.
2-2-7 تـنـيـدن(STRESSING)
اگر در محلهاي مورد تعمير، تركها در منطقه بسيار وسيعي ظاهر شده باشد، به طوري كه بخيه زدن (STITCHING) بسيار گسترده اي را ايجا ب نمايد، ممكن است راه حل تنيدن (STRESSING) ، را مد نظر قرار داد. در روش تنيدن (STRESSING)، ميلگرد يا كابلهايي در منطقهء بتن آسيب ديده كار گذاري شده و سپس به آنها تنشهاي از پيش محاسبه شده را وارد كرده و در نهايت مهارشان مي نماييم. در اين روش بايستي دقت كافي مبذول گردد تا عمل تنيدگي (STRESSING) باعث به وجود آمدن تركهايي در مناطق ديگر نشود.
2-2-8 درزگيري (CAULKING)
در اين روش، گسل يا RUPTURE (تركهاي باريك ايجاد شده در بتن) با ماده اي پر مي شود كه حالت پلاستيك دارد. از خصوصيات اين مواد آن است كه نه مثل ملات روان و دوغاب، جاري مي شود و نه مثل ملات خشك، سفت مي ماند، بلكه حالت پلاستيكي دارد. در صورتي كه تركهايي كه بايستي پر شوند غير فعال (DORMANT) باشند، مي توان از ملات ساخته شده از سيمان پر تلند و يا ملاتي كه خاصيت انبساطي داشته باشد استفاده نمود. اما اگر تركهاي مذكور فعال باشند، بايستي از مواد ارتجاعي (ELASTOMERIC) كه از خاصيت ارتجاعي برخوردار هستند استفاده گردد. در بعضي مواقع و با توجه به شرايط خاصي، ممكن است عمل درزگيري با فشار نيز انجام پذيرد.
2-2-9 پوشش (COATING)
در اين روش نازكي به حالت مايع يا پلاستيك روي قسمتهايي از سطح بتن آسيب ديده و يا در معرض خرابي است اعمال مي گردد. در موقع انتخاب پوشش مذكور، دقت كافي بايستي مبذول گردد تا لايه محافظ حاصله داراي مشخصات مورد نظر باشد. اين پوشش را مي توان با برس، غلتك و يا به طريقه پاشيدن (اسپري) اعمال نمود. پايداري اين گونه پوششها، بسيار متفاوت است. اين پوششها اغلب براي جلوگيري از نفوذ آب، محافظت در برابر عوامل مخرب شيميايي و ايجاد پايداري و دوام بيشتر براي سطح بتن در مقابل آمد و شد زياد و سنگين كاربرد داشته و يا ممكن است پوشش فقط جنبه ظاهري و زيبايي داشته باشد.
2-2-10 طريقه معمول مرمت قسمتهاي خراب شده با استفاده از مواد شكل پذير
(CONVENTIONAL REPLACEMENT USING PLASTIC MATERIALs)
در اين روش پس از كندن و خارج كردن بتن نامرغوب (نامناسب و ناسالم)، قسمتهاي بر داشته شده را مي توان با استفاده از ملات، بتن، سيمان معمولي و يا ساير موادي كه براي تعميرات تكه اي يا وصله پينه اي (PATCH)به كار مي روند، جايگزين نمود. بايستي توجه داشت كه اين گونه مواد، شامل مواد الاستومري (ارتجاعي) نمي باشند. اين روش يكي از روشهاي بسيار معمول در تعميرات سازه هاي بتني بوده و مناسب جاهايي است كه عامل خرابي تكرار نشده و يا كاملاً از بين رفته باشد.
2-2-11 باروري توسط خلاء(VACUUM IMPREGNATION)
در اين روش، معمولاً قسمت آسيب ديده به وسيله صفحه پوليتن (POLYTHENE SHEET ) پوشانده شده، سپس عمل خشك كردن سطح با استفاده از خلأ (VACUUM) انجام پذيرفته و منافذ كاملاً مسدود مي شوند. پس از اطمينان كامل از هوابند و آب بند بودن سيستم، موادي كه قرار است بر روي سطوح و خلل و فرج آسيب ديده اعمال شود، مورد مصرف قرار مي گيرند.
در اين روش ادعا شده است كه از طرفي به دليل ايجاد خلأ در قسمتهاي اطراف منطقهء آسيب ديده و از طرف ديگر به دليل اينكه رزين و يا ساير بارور كننده (IMPREGNANT) به توسط فشار اتمسفر درون منافذ و خلل و فرج تزريق مي گردند، مواد بارور كننده به درون منافذ كاملاً نفوذ كرده و حتي تركهاي مويي را نيز به واسطه عمل موئينگي CAPILLARY پر مي نمايد، لذا پس از انجام باروري (IMPREGNATION) هيچگونه حفره اي باقي نمي ماند. به عنوان مقايسه، بايد توجه داشت كه در سيستم باروري (IMPREGNATION) با فشار، ممكن است مواد، كاملاً منافذ و خلل و فرجها را پر نكند. تشكيل حفره هاي هوادار و يا وجود ذرات خاشاك و غيره از استحكام پوشش كاسته و در نتيجه رسيدن به يك پوشش كامل و بي نقص را تقريباً غير ممكن مي سازد.
2-2-12 روشهاي سطلي(DUMPBUCKET METHODS)
در اين روش سطلهايي را از مواد تعميري پر كرده و بر روي نقاطي كه بايد تعمير شود قرار مي دهند. اگر اين روش براي تعميرات زير آبي به كار گرفته شود، قسمتي از مواد تعميري هر سطل به علت شسته شدن (WASH- OUT) از بين رفته و در نتيجه حفره هاي لانه زنبوري در سيستم تعمير شده به وجود مي آيد. جهت جلوگيري يا به حداقل رساندن حفره هاي لانه زنبوري، بايستي از مخلوطي با درجه چسبندگي (COHESIVE) بالا استفاده نمود. بايد به خاطر داشت كه اين روش، مناسب مكانهايي است كه به اندازه كافي وسيع بوده و عمل خالي كردن سطل داراي مواد تعميري، بدون آسيب رساندن به قالب امكان پذير باشد.
2-2-13 روش قيفي(HOPPER METHODS)
در اين روش، لوله سخت و يا ارتجاعي به يك قيف (HOPPER) كه منبع تغذيه اي مواد تعميري است، اتصال دارد. با اينكه در شروع عمليات، خروجي لوله بر روي كف قرار مي گيرد، اما به تدريج كه جريان مواد تعميري ادامه مي يابد، خروجي لوله پايين تر از سطح مواد واقع شده و امكان تماس مواد را با آب كه ممكن است در اطراف وجود داشته باشد، قطع كرده و يا به حداقل مي رساند. در اين سيستم جريان مواد به طريقه ثقلي صورت مي گيرد.
2-2-14 روش پمپ (PUMP METHOD)
اين روش شباهت زيادي به روش HOPPER دارد (قسمت 2-2-13) و فرق اساسي اين دو روش در آن است كه در اين روش به جاي استفاده از جريان ثقلي، از يك پمپ داراي فشار استفاده مي شود كه فشار آن را نيز مي توان تغيير داد.
2-2-15 روش كيسه اي (BAGGED METHOD)
اين روش مشابه روش پيش آكنده (PREPACKED) مي باشد. تفاوت اين روش با روش مذكور در آن است كه در اين سيستم سنگدانه هاي درشت درون قالبي قرار داده شده و سپس فضاهاي خالي بين سنگدانه ها با تزريق ملات روان يا دوغاب پر مي گردد.
انتخاب مواد و مصالح مصرفي در بهسازي سازه هاي بتني از اهميت ويژه اي برخوردار است. به همين دليل در اين بخش علاوه بر دوغاب، ملات و بتن ساخته شده از سيمان معمولي، مواد جديد شيميايي مناسبي كه براي اين منظور متداول گرديده شرح داده شده است. مواد و مصالحي كه براي سازه هاي بتني زيرآبي مورد نياز است نيز مبسوط تر مورد بررسي قرار گرفته است.
3- مواد تعميري (REPAIR MATERIALA)
در اين بخش موادي كه در تعميرات بتني معمول است، شرح داده شده اند.

3-1 بنونيت (BENTONITE)

اين ماده كه از صخره و يا سنگPULVERISED ROCK استخراج شده از خاكسترهاي آتشفشاني است و داراي درصد بالايي از املاح (مينرال) رس است. بنتونيت در تماس با آب تا حدود 30 برابر حجم اوليه خود آب جذب نموده و منبسط مي گردد. محصول به دست آمده داراي شكل ژله مانند بوده و به صورت سد كننده نفوذ و گذر آب عمل مي كند. از اين ماده براي جلوگيري از نشت آب در زير زمينهاي موجود، استخرها، مخازن آب، حوضچه ها، كانالهاي آبياري، سدها و تأسيسات مشابه استفاده مي شود. هنگام مصرف بنونيت مي توان آن را به صورت خشك كه در درون حفره ها و منافذ سطوح قرار داده مي شود و يا به صورت ژل، به كار برد.

3-2 پوششهاي قيري(BITUMINOUS COATINGS)

اين سيستمهاي پوششي عبارتند از: آسفالت و يا موادي چون قطران ذغال سنگ (COAL – TAR). اين مواد موقعي كه آب بند نمودن بتن و يا حفاظت آن در مقابل عوامل جوي مورد نظر باشند به كار گرفته مي شوند. از جمله مشخصات اين مواد مي توان ارزاني و شناخته شدن آن بين دست اندركاران را نام برد. از خصوصيات ديگر اين پوششها آن است كه ضخامت لايه اعمالي را مي توان متناسب با عملكرد خواسته شده از سيستم، تغيير داد. از معايب اين گونه پوششها مي توان نياز به تجديد متناوب، متصاعد شدن بوي بد، كثيفي (MESSINESS) به هنگام اعمال لايه، خشك شدن و ترك خوردن در مقابل نور خورشيد، حساسيت آنها نسبت به درجه حرارت محيط و آسيب پذيري و از بين رفتن اين پوششها در با بعضي محلولها از قبيل بنزين را، ذكر نمود.

3-3 بتن، ملات و دوغاب ساخته شده از سيمان پرتلند معمول

(ORDINARY PORTLAND CEMENT CONCRETE, MORTAR AND GROUT)
اين سيستمها كه به عنوان مواد تعميري در نظر گرفته مي شوند، امتيازاتي از قبيل: تغيير حجم مشابه با بتن مادر، شباهت ظاهري، ارزاني نسبي در مقايسه با ساير سيستمها و در دسترس بودن و موجود بودن دانش لازم در مورد خود سيستمها را، دارا مي باشند. در حالي كه جايگزين كردن قسمتهايي از سازه و همچنين نقاطي كه عميقاً نياز به تعمير دارند، با بتن انجام مي گيرد؛ ملات براي قسمتهايي كه كمتر از 35 ميليمتر عمق دارند. بايد توجه داشت كه اندازه سنگدانه بتن نيز مي تواند در انتخاب سيستم تعميري دخالت داشته باشد. نلات سيماني را مي توان با دست، پمپ و يا جريان ثقلي بر روي قسمتهاي تعميري اعمال نمود. خصوصاً در نقاطي كه عمق تعمير زياد نبوده و جريان روان و مداوم (CONSISTENCY) دوغاب مورد نياز نباشد، بايستي از ملات استفاده نمود.
دوغاب براي جاهايي مصرف مي شود كه عمق تعمير كم بوده و يا قسمتهاي مورد تعمير قابل رؤيت نيستند. دوغاب را مي توان با استتفاده از جريان ثقلي و يا پمپ اعمال نمود. بايستي توجه داشت كه دوغاب به علت داشتن آب زياد، پس از خشك شدن بيش از ملات و يا بتن با دانه بندي خوب، جمع شدگي حاصل مي كند. در مواردي كه دوغاب به عنوان سيستم تعميري مد نظر قرار مي گيرد، بهتر است دوغابهاي انحصاري با مشخصه هاي فني خاص را مورد توجه و بررسي قرار داد.

3-4 درزگيريهاي ارتجاعي (ELASTOMERIC SEALANTS)

از اين مواد براي پر كردن تركهاي زنده استفاده مي گردد. از وظايف اين گونه مواد آن است كه از نفوذ آب، خاشاك و آلودگيها جلوگيري كرده، انبساط و انقباض مداوم و مورد نظر از خود نشان داده و چسبندگي خوبي را به اطراف و لبه تركها داشته باشد. اساساً اين گونه مواد شامل سيستمهاي گرم و سرد مي باشند. اثرات جوي، حرارتهاي زياد، دماهاي پايين، عبور و مرور، اثرات محيطي، چسبندگي و خاصيت ارتجاعي اين گونه مواد بايستي قبل از انتخاب، به طور دقيق و كامل مورد بررسي قرار گيرند.

3-5 رزينه(RESINS)

رزينهاي مصنوعي يا سينتتيكي (SYNTHETIC) كه در صنعت راه و ساختمان به كار گرفته مي شوند، از توليدات صنايع پتروشيمي مي باشند. انواع اين رزينها بسيار زياد و گسترده بوده ولي از جمله آنهايي كه بيشتر در اين صنعت معمول هستند، مي توان اپوكسيها (اپوكسيدها نيز گفته مي شوند)، پلي استرها، پلي يورتانها، اكريليك ها، پلي وينيل استاتها و استيرن بوتادين ها، را نام برد. از آنجا كه سه گروه آخري اساساً براي باروري (IMPREGNATION) و يا همراه سيمان پرتلند معمولي به كار گرفته مي شوند، تنها به شرح سه گروه اولي يعني اپوكسي ها، پلي استرها و پلي يورتانها در اين بخش مي پردازيم.
3-5-1 اپوكسيها (EPOXIES)
نام اپوكسي از اين واقعيت منشأ مي گيرد كه مولكولهاي اين سيستم از رزينها، داراي كربن و اكسيژن هستند و به همين علت اپوكسيدها ناميده مي شوند. اتم اكسيژن به دو اتم كربن اتصال دارد كه خود اين اتمهاي كربن نيز به طرق ديگري به يكديگر متصل هستند. بنابراين ساده ترين نوع اپوكسيدها، اكسيد اتيلين مي باشد كه واكنش(REACTIVITY) رزينهاي اپوكسي وابسته به نوع گروههاي اكسيد ايتلن مي باشد. گروههاي اپوكسيد به خاطر داشتن ساختمان مولكولي خاص، داراي مشخصه عكس العمل (REACTIVITY) بسيار بالايي بوده و در واقع مي توانند با بيش از 50 نوع نمونه (SPECIES) شيميايي مخلوط شده و سيستمهاي عمل آمده و سخت شده رزيني را ايجاد كنند. از انواع مواد عمل آورنده اي كه بعضي از اوقات سخت كننده (HARDENERS) نيز گفته مي شوند، مي توان آمين ها، آميدها، استرها، تريفلوريدبرن و غيره را نام برد.
بايد توجه داشت كه تفاوت در به كارگيري مواد عمل آورنده(CURING AGENTS) ، با محصولات رزيني سخت شده (SET) خصوصيات مختلفي را ايجاد مي نمايد. لذا با توجه به عملكرد فيزيكي كه از يك سيستم رزيني انتظار مي رود، مواد عمل آورنده يا (CURING – AGENTS) را بايستي طوري انتخاب كرد كه انتظار مذكور حاصل گردد. با اين حال رزينهايي كه در عمل مورد استفاده قرار مي گيرند هر كدام حاصل اختلاط و تركيب چند سيستم مي باشند كه با نسبتهاي دقيق مخلوط و تركيب شده اند. اين امر از عهده يك عمل آورنده خارج بوده و معمولاً به اين طريق فرمول دهندگان، عوامل اصلي تشكيل دهنده رزينها را خريداري و با اطلاع كافي از خصوصيات عمل آورنده هاي مختلف، با دقت و توجه به سيستم رزين در عمل و پس از توزين و مخلوط نمودن دقيق نسبتهاي لازم از پايه و عمل آورندهء رزينها، رزين مورد نظر را مي سازند.
نكته قابل توجه اين است كه بعضي اوقات براي دسترسي به خصوصياتي، ممكن است علاوه بر پايه و عمل آورنده رزيني، از موادي نيز به صورت پر كننده و تغيير دهنده، در ساخت اوليه رزين مورد نظر كمك گرفته شود. از سال 1940 كه اپوكسي ها در صنعت راه و ساختمان به كار گرفته شدند، از آنها براي چسباندن قطعه هاي ساختماني، تزريق تركها، پوششها، تعميرات تكه اي (PATCH)، تحكيم پيچها، تحكيم پايهء ماشين آلات، به كارگيري در سطوح قابل سايش، اعمال در كارهاي زير آبي و به عنوان ماده چسباننده استفاده شده است. دلايل عمده علاقه و موارد استفاده مهندسين از رزينهاي اپوكسي را، مي توان به شرح زير توصيف نمود:
(الف) دارا بودن ويسكوزيته (غلظت) پايين كه نفوذ آن را آسان مي سازد.
(ب) بسته به نوع عمل آمرنده و دماي محيط، رزينهاي اپوكسي در مدت زمان كوتاهي عمل آمده و سخت مي شوند.
(پ) با توجه به اينكه سيستم اپوكسي رزينها طوري فرمول بندي شده است كه خالي از حلال مي باشد، تغييرات در نحوه قرار گيري و ترتيب مجدد مولكولها در زمان عمل آوري (CURING) سيستم بسيار اندك بوده و جمع شدگي در موقع سفت شدن نيز در حد پايين مي باشد. همچنين اين سيستمها به هنگام عمل آوري و تركيبات داخلي، دچار واكنشهاي غيره منتظره نمي گردند.
(ت) دارا بودن قدرت چسباندن بسيار بالا.
با وجود امتيازات فوق الذكر اپوكسيها، عوامل محدود كننده اي نيز وجود دارند كه موقع انتخاب اين سيستمها بايستي دقيقاً مد نظر قرار گيرند. بعضي از اين عوامل محدود كننده را مي توان به صورت زير بيان نمود:
1- سطح بتن مادر بايستي مقاوم، تميز و براي بيشتر سيستمهاي اپوكسي خشك باشد.
2- حرارت حاصل از تركيب و عمل آوري اپوكسيها مي تواند به خاطر اثر حرارت زاي آنها(EXOTHERMAL)، به طور فاحشي بالاتر از سيستمهاي تعميري با سيمان معمولي باشد.
3- با اينكه قدرت انقباض (جمع شدگي) سيستمهاي اپوكسي به گفتهء توليد كنندگان آنها در حد ناچيزي مي باشد، معذالك نمي توان از اثرات منفي آنها صرفنظر نمود. اين موضوع خصوصاً وقتي با اثرت حاصل از حرارت ايجاد شده (EXOTHERMIC) همراه باشد، ممكن است نتايج مخربي را به بار آورد.
4- براي مصرف اپوكسيها حداقل درجه حرارت محيط معمولاً 5 درجه سانتيگراد قيد مي شود كه بايستي كاملاً مراعات گرديده و ممكن است كنترل دوباره اين موضوع ضرورت يابد. البته اين محدوديتها در صورتي است كه انتظار داشته باشيم سيستم حداكثر مقاومت خود را در مدت زمان نسبتاً كوتاهي به دست آورد.
5- اغلب سيستمهاي اپوكسي در مقابل رطوبت حساس مي باشند. بنابراين هنگام استفاده از سيستمهاي اپوكسي، رطوبت و خيسي محيط، بايستي مورد توجه و مطالعه قرار گيرد.
6- نسبت اجزا و همچنين اختلاط كامل اجزاي سيستمهاي اپوكسي بايستي دقيقاً مورد كنترل و بررسي قرار گيرد. بايستي يادآور شد كه اهميت اين مطلب در نظر افرادي كه دائم با مواد سيماني معمولي سر و كار دارند به قدري نيست كه توجه دست اندكاران را آن گونه كه شايسته است به خود معطوف دارد.
7- مسأله ايمني از اهميت ويژه اي برخوردار بوده و بايستي حتماً در تمامي مراحل مراعات شود. بايد توجه داشت كه اجزاي سيستمهاي اپوكسي در صورت تماس با پوست و يا استشمام بخار اپوكسي توسط افراد، ايجاد ناراحتي بسيار جدي مي نمايد. علاوه بر اين بعضي از اجزا قابل احترق بوده كه رعايت اصول و ملاحظات ايمني را حتمي و ضروري مي سازد. اماكني كه در آنها اقدام به مصرف آپوكسي مي گردد، بايستي از تهويه مؤثر و مطلوبي برخوردار باشند. خصوصاً هنگامي كه اپوكسي ها در فضايي محدود و سر بسته به كار گرفته مي شوند.
8- بايد توجه داشت كه بين مدول الاستيسيته (ضريب ارتجاعي) اپوكسي ها و ضريب ارتجاعي بتن مادر و همچنين بين ضريب انبساط حرارتي اين دو، اختلاف فاحش و قابل تأملي وجود دارد كه در صورت نياز، انجام مقايسه و به كارگيري تمهيدات لازم ضروري است. اختلاف قابل ملاحظهء ضرايب فوق الذكر باعث تشكيل تنشهاي برشي در مرز بين لايه اپوكسي و بتن قديم گرديده و در صورت ازدياد بيش از حد، باعث جدا شدگي دو سيستم از يكديگر مي شود.

ریپورتر
27th March 2010, 03:04 PM
3-5-2 پلي استرها (POLYESTERS)
عمل گيرش و سخت شدن پلي استرها كاملاً با گيرش و سخت شدن اپوكسيها تفاوت دارد. در مورد پلي استرها بايد گفت كه در صورت وجود كاتاليست ها، عمل و عكس العمل پليمري بين نقاط مشابه در زنجيره هاي رزيني يكسان صورت مي گيرد. بنابراين كنترل دقيق نسبتهاي اختلاط به آن اندازه كه در مورد رزينهاي اپوكسي ضرورت دارد، حساس و بحراني نيست. براي بهبود بخشيدن به قدرت عمل و عكس العمل تركيبي و ويسكوزيته پلي استرها، معمولاً از حلالهايي مانند استيرن كمك گرفته مي شود. هنگامي كه يك سيستم رزيني داراي پر كننده باشد، معمولاً كاتاليست مربوطه به صورت پودر كه به ماده پر كنندهء خنثي (از نظر تركيب شدن) مخلوط شده، به كار گرفته مي شود. نكتهء حائز اهميت اينكه، نه نتها از نظر خواص مكانيكي پلي استرها و اپوكسي ها به هم شباهت دارند، بلكه موارد كاربرد آنها نيز به مشابه هم مي باشد. با اين همه تا آنجا كه به تعميرات بتني مربوط مي شود، تفاوتهايي بين اين دو سيستم يعني پلي استرها و اپوكسيها وجود دارد كه اهم آنها را مي توان به شرح زير بيان نمود:
1- در مقايسه با اپوكسي ها، پلي استرها حداكثر مقاومت نهايي خود را در مدت زمان كمتري به دست مي آورند.
2- با توجه به مدت زمان عمل آوري كوتاه پلي استرها، اثرات اگزوترمي آنها بيش از اثرات اگزوترمي اپوكسي هاست. در نتيجه به هنگام مصرف پلي استرها بايد ضخامت لايه هاي اجرايي كمتر از زماني باشد كه اپوكسي به كار گرفته مي شود.
3- حساسيت سيستمهاي پلي استري نسبت به رطوبت، بيشتر از حساسيت سيستمهاي اپوكسي در شرايط مرطوب مي باشد.
4- امكان حملات شيميايي از طرف خمير حاصل از سيمان پرتلند كه آلكالين (قليايي) است، در مورد سيستمهاي پلي استري بيشتر از سيستمهاي اپوكسي است.
5- مقدار جمع شدگي (SHRINKAGE) سيستمهاي پلي استري حين عمل آوري بيشتر از مقدار همين نوع جمع شدگي در سيستمهاي اپوكسي است.
با توجه به امكان تأثير حملات شيميايي بر روي سيستمهاي پلي استري و اينكه اين سيستمها داراي حساسيت بيشتري (در مقايسه با اپوكسي ها) در مقابل رطوبت مي باشند، نمي توان از اين سيستمها به عنوان پر كننده تركها بهره جست.
3-5-3 پلي يورتانها (POLYURETHANES)
معمولاً از پلي يورتانها در مواقعي استفاده مي شود كه نياز به ماده فنري (RESILIENT) احساس مي شود. زيرا خاصيت ارتجاعي و انعطاف پذيري (FLEXIBILITY) پلي يورتانها بيش از سيستمهاي پلي استري و سيستم اپوكسي ها است. يكي از نمونه هاي پلي يورتانها، به كارگيري آنها در داخل مخازن و جاهايي است كه از سيستم، انتظار مقاومت بالايي در برابر تغييرات و اختلاف دما مي رود. در مورد رطبت بايد توجه داشت كه سيستمهاي پلي يورتاني، حساسيت بسيار زيادي نسبت به ميزان رطوبت محيط داشته و به همين دليل مصرف آنها در كارهاي زير آبي توصيه نمي شود.

3-6 بتن، ملات، و دوغابهاي منبسط شونده

(EXPANDING MORTARS, GROUTS & CONCRETES)
دليل عمده استفاده از بتن، ملات و دوغابهاي منبسط شونده آن است كه بتوان بر مشكلات انقباض (جمع شدگي) كه معمولاً در به كارگيري مواد با سيمان معمولي مشاهده مي شود فائق آمد. مكانيزم عمل به نحوي است كه باعث مي شود مواد تعميري به هنگام گيرش و سخت شدن (عمل آوري (CURINGانبساط پيدا كرده و با عمل انقباض مخالفت و آن را خنثي نمايد.

3-7 بتن و ملات داراي الياف مصنوعي

(FIBRE REINFORCED CONCRETE & MORTAR)
اساساً افزودن الياف مصنوعي به بتن يا ملات به سه منظور اصلي افزايش مقاومت كششي، افزايش مقاومت خمشي و افزايش در مقابل ضربات ناگهاني (IMPACT RESISTANCE) صورت مي گيرد.
به طور كلي دو گروه اصلي از الياف مصنوعي وجود دارند كه براي منظورهاي فوق مورد استفاده قرار مي گيرند. مدلهاي گروهي از اين الياف مصنوعي پايينتر از مدلهاي بتن يا ملات مي باشد؛ مانند نايلون (NYLON) و پلي پروپيلن (POLYPROPYLENE). در حاليكه مدولهاي گروه دوم بالاتر از مدولهاي بتن يا ملات هستند؛ مانند شيشه (GLASS)، استيل و كربن. از بتن يا ملات مسلح به الياف مصنوعي به طور موفقيت آميزي به عنوان لايه هاي نازك روكشي (OVERLAYS) روي جاده ها، خيابانها و باندهاي فرودگاه (RUNWAYS) استفاده شده است. همچنين از اين سيستم مي توان در مكانهايي كه خلأزايي(CAVITATION) و فرسايش (EROSION) مشكلاتي را باعث شده است (مانند روي سرريزهاي سدها) و ساير مراحل خاص كمك گرفت. روشهايي نيز ابداع شده است كه با به كارگيري آنها مي توان از مخلوطهاي واجد الياف مصنوعي، در سيستمهاي بتن پاشي استفاده نمود.
اخيراً گزارش شده است كه افزايش الياف مصنوعي در سيستمهاي باعث ازدياد قدرت چسبندگي لايه هاي تعميري به بتن مادر مي گردد. البته سيستمهاي انحصاري نيز وجود دارند كه براي تعميرات بتن به كار مي روند و در آنها علاوه بر پليمرها، الياف مصنوعي نيز ديده مي شود. عليرغم موفقيتهايي كه تا امروز به دست آمده، ممكن است پيشنهاد اين سيستم به عنوان يك ماده تعميري، ناپخته به نظر برسد چرا كه مسأله دوام و پايداري آن در دراز مدت، در مرحله آزمون و بررسي و مطالعه قرار دارد. نكته اي كه بايد مورد توجه خاص قرار گيرد، نحوه مخلوط و پخش شدن (DISPERSION) الياف مصنوعي در سيستم است. بارها مشاهده گرديده كه به هنگام مخلوط نمودن الياف با ساير مواد بتني يا ملات (سيمان- سنگدانه- آب و…)، الياف مصنوعي تمايل به جمع شدن در يك جا داشته يا در جهات مشخصي قرار مي گيرند. كه اين امر توزيع برابر و يكنواخت الياف را با اشكال مواجه مي سازد.

3-8 لاتكس (LATICES)

در حال حاضر باور بر اين است كه بتن يا ملاتي كه داراي افزودنيهاي لاتكسي (LATEX) مي باشد، براي مرمت سازه هاي بتني آسيب ديده بسيار مفيد واقع مي شود. اصطلاحاتي كه براي اين گونه مواد تعميري به كار برده مي شود، به شرح زير است:
بتن لاتكسي (LATEX CONCRETE)
بتن اصلاح شده لاتكسي (LATEX MODIFIED CONCRETE)
و اخيراً بتن اصلاح شده پليمري (POLYMER MODIFIED CONCRETE)
توضيح ضروري اين است كه نبايد سيستمهاي ياد شده را با بتن پليمري (POLY. CONC.) اشتباه نمود. چون در بتن پليمري تنها عامل گيرش (BINDER) خود پليمر مي باشد در صورتي كه در بتن اصلاح شده پليمري، سيمان كه داراي خاصيت چسبندگي و گيرش مي باشد نيز به كار رفته است.
به طور كلي، در مقايسه با بتن و ملات ساخته شده از سيمان پرتلند معمولي، بتن و ملات اصلاح شده پليمري داراي خواص و مشخصات ويژه اي مي باشند. اين مشخصات را مي توان به صورت زير خلاصه نمود:
(الف) در صورت نياز مي توان آن را به صورت لايه هاي نازك و لبه پري (FEATHER- EDGED) به كار برد.
(ب) از قدرت چسبندگي بيشتر به بتن مادري كه داراي مقاومت و مرغوبيت كافي باشد، برخوردار است.
(پ) به علت اينكه اين گونه مواد خود حالت نگهدارندهء آب (WATER RETENTIVE) دارند، عامل عمل آورنده و يا پوششهاي عمل آورنده از اهميت چنداني برخوردار نيستند، البته بايستي از خشك شدن در شرايط تابش مستقيم آفتاب و باد اجتناب گردد.
(ت) داراي مقاومت كششي بيشتري مي باشند.
(ث) داراي حالت ارتجاعي و نرمش بيشتري مي باشند.
(ج) از دوام و پايايي بهتري برخوردارند.
با اينكه قيمت بتن و ملات اصلاح شده پليمري از قيمت بتن و ملات با سيمان معمولي، بيشتر است ولي آنها بسيار ارزانتر از مواد اپوكسي به شمار مي آيند. بايد توجه داشت كه وقتي پليمر به مخلوط بتن يا ملات افزوده مي گردد، به كارگيري افزودنيهاي ديگر بايستي با دقت بيشتري صورت گيرد. چرا كه ممكن است سازگاري (COMPATIBILITY) لازم بين آنها موجود نبوده و اختلالاتي را شاهد باشيم. نكته قابل ذكر اينكه جا به جا كردن و پرداخت سطح نهايي بتن و ملات اصلاح شده پليمري مشكلتر از مواردي است كه در آنها از بتن و ملات با سيمان معمولي استفاده شده است.
از جمله پليمرهاي لاتكسي كه در صنعت بتن كاربرد بيشتري دارند، مي توان استيرن بوتادين(STYRENE BUTADIENE)، ساران(SARAN) اكلريك (ACRYLIC) و پلي وينيل استات (POLYVINYL ACETATE) را نام برد. اين پليمرها به صورت پودر و يا مايع به مخلوط بتن يا ملات اضافه مي گردند. گفته مي شود كه نتايج بهينه موقعي حاصل مي گردد كه سيستم به مدت 3-1 روز به صورت خيس، عمل آمده و سپس در هواي آزاد قرار گيرد. صاحبنظران بر اين عقيده هستند كه حداقل بخشي از بهبود مكانيكي و پايايي يا دوام حاصل از به كارگيري اين گونه سيستمها، به دليل كاستن از درجه تخلخلي است كه در نتيجهء وجود پليمر در سيستم پديد مي آيد. همچنين ادعا بر اين است كه يكي از مهمترين مشخصه هاي بتن يا ملات اصلاح شده پليمري، به عنوان دو مادهء تعميري در سازه هاي بتني، قدرت چسبندگي خوب آنها به بتن قديم (مادر) مي باشد.

3-9 ساير مواد پوششي

(OTHER COATING MATERIALS)
علاوه بر موادي كه مانند بنتونيت، سيستمهاي قيري و رزيني به عنوان مادهء پوششي مورد استفاده قرار مي گيرند، مواد ديگري نيز از قبيل روغنLINSEED ، سيليكونها (SILICONES) سيلانها (SILANES) موجود مي باشند.

3-10 سيمانهاي مخصوص

(SPECIAL CEMENTS)
سيمانهاي مخصوصي از قبيل سيمان با آلوميناي بالا (HIGH ALUMINA) و سيمانهاي فسفات منيزيوم (MAGNESIUM PHOSPHATE) وجود دارند كه مي توان از آنها براي كارهاي تعميرات بتني استفاده نمود. عمده ترين امتيازات اين سيمانها، گيرش سريع و مقاومت بالاي آنها در زمان كوتاه مي باشد. همچنين اين سيمانها در مقابل بعضي از اسيدها، روغنها و چربيها، آب دريا، مواد شكري و سولفاتها از خود مقاومت و پايايي بالايي نشان مي دهند.

3 - 11 مواد تعميري زير آبي

(UNDER WATER REPAIR MATERIALS)
به طور كلي مي توان موادي را كه براي تعميرات زير آبي به كار مي روند، به دو گروه سيماني (CEMENTITIOUS) و رزيني (RESINOUS) تقسيم نمود. با توجه به اندازه و وسعت محل تعمير، ممكن است اين طبقه بندي به چند گروه ديگر از قبيل تعميرات تركها (CRACK REPAIRS) و تعميرات قطعه اي يا سطحي (PATCH REPAIRS) نيز تقسيم گردد. بررسي مدارك موجود نشان مي دهد با وجود آن كه از سيستهاي رزيني هم براي تعمير و تزريق تركها وهم براي تعميرات سطحي (PATCH) استفاده شده است، سيستهاي سيماني هنوز براي تزريق تركها به كار گرفته نشده اند.
در ميان سيستمهاي رزيني به نظر مي رسد كه اكثراً اپوكسيها براي انجام تعميرات بتني زير آبي مورد استفاده قرار گرفته اند و دليل اين امر را مي توان عملكرد و ويژگيهاي بهتر سيستمهاي اپوكسي، در مقايسه با ساير سيتمهاي موجود دانست. از جلمه ويژگيهاي اپوكسيها كه باعث مي گردد آنها براي تعميرات زير آبي مورد توجه و درخواست قرار گيرند مي توان مقاومت بالا، قدرت جمع شدگي (SHRINKAGE) كم در مقابل رطوبت را نام برد. از آنجا كه شرح سيستمهاي رزيني در بخش 3-5 (رزينها-RESINS ) آمده است، فقط به شرح و بررسي كامل سيستهاي سيماني كه براي تعميرات بتني در زير آب به كار گرفته مي شوند، مي پردازيم.
3-11-1 مواد سيماني براي تعميرات زير آبي
(CEMENTITIOUS MATERIALS FOR UNDER WATER REPAIRS)
بر عكس دوغابهاي (GROUTS) رزيني، دوغابهاي سيماني كاملاً براي مهندسين و دست اندر كاران آشنا و شناخته شده مي باشند. ماده چسباننده و گيرش (BINDER) دوغابهاي سيماني، سيمان پرتلند معمولي است كه به دليل در دسترس بودن، قيمت پايين، سهولت مصرف و همچنين به واسطهء شناخته شدن آن در صنعت بتن، ملات و دوغاب ساخته شده با سيمان پرتلند معمولي براي تعميرات داخل آب چندان مناسب نيستند. دلايل آن و اقداماتي كه مي توان براي غلبه بر اين نارساييها و همچنين سيستمهاي تعميراتي ساخته شده با سيمان معمولي به كار برد، در اين بخش به تفصيل شرح داده شده اند.
3-11-1-1 ويژگيهاي آب اندازي
(HIGH BLEED CHARACTERISTICS)
پس از قرار گرفتن مخلوط بتن يا ملات، آب آن به خاطر پايين بودن وزن مخصوصش، از دانه ها جدا شده و نزديك سطح جمع مي گردد. اين فرآيند (PROCESS) كه نوعي جداشدگي (SEGREGATION) است به نام آب انداختن (BLEEDING) خوانده مي شود. از آنجا كه آب انداختن (BLEEDING) براي تعميرات بتني مخرب مي باشد، بايستي آن را كنترل نمود. يك راه حل آن است كه آب مخلوط را كم مي كنيم كه در اين صورت رواني مخلوط تحت تأثير قرار مي گيرد. راه ديگر آن است كه از افزودنيها كمك گرفته شود.
ماده افزودني كه مورد استفاده قرار مي گيرد بايستي طوري انتخاب شود كه ضمن كم نمودن آب مورد نياز مخلوط، رواني آن را حفظ نمايد. براي اين منظور از روان كننده ها (PLASTICIZERS) استفاده مي شود كه به واسطهء وارد نمودن هوا به درون مخلوط، رواني مخلوط را بهبود مي بخشد بدون آنكه نيازي به آب بيشتر باشد. همچنين مي توان آب انداختن (BLEEDING) را با به كارگيري پودر آلومينيوم، يك ماده منبسط شونده، كلريد كلسيم (cac12)، يك ماده شتاب دهنده با C3A (تري كلسيم آلومينات) بالا و ذرات ريزتر سيمان كم نمود.
3-11-1-2 زمان گيرش طولاني (PROLONGED SETTING TIME)
زمان لازم براي سخت شدن و گيرش مخلوط سيمان پرتلند معمولي، خصوصاً در حرارتهاي پايين بسيار طولاني بوده و حدود چند روز به طول مي انجامد. گرچه ممكن است اين خاصيت، موقع انجام تعميرات، مزيتي به شمار آيد، ولي پس از اينكه بتن در جاي خود قرار گرفت اين مزيت تبديل به يك عيب مي شود. از انجا كه زمان گيرش به حرارت وابسته است، اهل فن دريافته اند كه مي توان با انجام اقداماتي حتي در دماهاي زير 50 درجه سانتيگراد نيز به محض قرار دادن بتن، عمل گيرش آغاز گردد.
3-11-1-3 شسته شدن (WASHOUT)
اگر سيمان پرتلند معمولي در تماس با آب قرار گيرد (مثلاً آب دريا)، به علت تمايل آن براي مخلوط شدن با آب بيشتر، در آب پخش و در نتيجه مواد متشكله (CONSTITUENTS) خود را از دست مي دهد. از آنجا كه در تعميرات بتني زير آب، بايستي مواد تعميري با آب تماس پيدا كرده و آن را جا به جا نمايد، عمل شسته شدن (WASHOUT) مي تواند اثرات منفي بسيار جدي بر جاي بگذارد. جهت غلبه براين مشكل، از افزودنيهايي با مواد شيميايي با بنيان (BASE) سلولزي (CELLULOSE) و يا پلي اتيلني (POLYETHYLENE) كه به آب مخلوط اضافه مي گردد، كمك گرفته مي شود. در واقع ماده افزودني، توليد محلول كلوئيدي (COLLOID) مي نمايد كه با تشكيل مانع يا پوسته اي با جريان الكتريكي ELECTRO STATIC، در روي سطح، از مخلوط شدن بيشتر آب جلوگيري مي كند.
3-11-1-4 آسيب پذيري در مقابل مواد شيميايي (SUSCEPTIBILITY TO CHEMICAL ATTACK)
گفته مي شود كه تري كلسيم آلومينات (C3A) موجود در مخلوط سيمان پرتلند معمولي، در مقابل عوامل شيميايي چون كلريدها و سولفاتها، آسيب پذير مي باشد. براي بهبود بخشيدن به مقاومت مخلوط سيمان پرتلند معمولي در قبال مواد شيميايي موجود در آب، از افزودنيهاي آب گريز (HYDROPHOBIC) كمك گرفته مي شود. رفتار اين افزودنيها مانند عمل آب بند كننده ها (WATER PROOFERS) بوده و براي پايين آوردن نفوذ پذيري بتن به كار مي روند. راه ديگر آن است كه از سيماني استفاده شود كه داراي تري كلسيم آلومينات كمتري باشد.
3-11-1-5 رواني ضعيف (POOR FLOWABILITY)
تا آنجا كه به رواني يك مخلوط (بتن، ملات، دوغاب) مربوط مي شود، به كارگيري روشها و تجهيزات مورد نياز از اهميت شاياني برخوردار است. زيرا اعمالي چون هم زدن، جا به جا كردن (HANDLING)، حمل و نقل و قرار دادن (PLACING) يك مخلوط بستگي به حد رواني (FLOWABILITY) يا كارآيي (WORKABILITY) دارد.
هچنين به اين نكته نيز بايد توجه داشت كه موقعيت مكاني محل تعمير و قابل دسترس بودن آن، در ميزان رواني و جريان مخلوط نقش تعيين كننده دارد.
يك روش براي بهبود بخشيدن به حد رواني (FLOWABILITY)، اين است كه موقع هم زدن مخلوط، آب بيشتري به آن اضافه گردد. اما اين عمل نتايج منفي در پي خواهد داشت. بنابراين به نظر مي رسد كه راه حل در كمك گرفتن از روان كننده ها (PLASTICIZERS) و ساير افزودنيهايي كه باعث كاهش آب مخلوط مي گردد، باشد. با علم به اينكه وظيفه آب موجود در مخلوط، فراهم آوردن رواني لازمه و نيز امكان انجام تركيبات شيميايي با دانه هاي سيمان مي باشد، لذا انتخاب روان كننده (PLASTICIZERS)و ساير مواد كاهندهء آب بايد به طريقي انجام پذيرد كه به وظيفه دوم آب مخلوط يعني فراهم آوردن امكان انجام تركيبات سيمان در مخلوط نه تنها آسيب نرساند بلكه آن را تسهيل نمايد.
باور اين است كه روان كننده ها (PLASTICIZERS) داراي خواصي هستند كه باعث كاهش كشش سطحي (SURFACE TENSION) آب مخلوط شده و با پخش نمودن ذرات سيمان در تمامي فاز AQUEOUS، اين ذرات توسط آب مخلوط كاملاً احاطه شده به نوبه خود باعث بهبود انجام تركيبات شيميايي در درون مخلوط مي شوند.
3-11-1-6 جمع شدگي يا انقباض (SHRINKAGE)
موضوع انقباض يا جمع شدگي (SHRINKAGE) از خصوصيات بسيار مهم يك سيستم تعميري است. اگر اين جمع شدگي بيش از حد مجاز باشد، باعث ترك خوردگي، جدا شدن لايه تعميري و در نتيجه كاهش استحمام و پايايي مي گردد.
عمل جداشدن لايه تعميري به دليل ايجاد تنشهاي موجود (RESIDUAL) در مرز بين لايه تعميري و بتن قديمي، كه حاصل انقباض سيستم تعميري است، بسيار بحراني بوده و خستگي (FATIGUE) و گسيختگيهاي چسبندگي در طول مرز دو لايه را باعث مي گردد. به طور كلي، بسته به مقدار آب مخلوط، انقباض سيمان پرتلند معمولي بالاست. گفته مي شود كه اين موضوع اساساً به دليل كاهش حجم مخلوط به هنگام گيرش است.
براي فائق آمدن به اين مشكلات، از افزودنيهايي كمك گرفته مي شود كه نه تنها باعث از بين رفتن انقباض (جمع شدگي) سيستم مي گردند، بلكه انبساط كلي را نيز ايجاد مي نمايند. بعضي از موارد منبسط شونده كه در صنعت راه و ساختمان معمول هستند به قرار زير مي باشند:
(الف) پودر آلومينيوم متاليكي (METALLIC ALUMINUM POWDER): در اين سيستم عمل منبسط شدن به دليل آزاد شدن گاز هيدروژن مي باشد كه خود حاصل عمل شيميايي آلكالي روي آلومينيوم متاليكي است.
(ب) آهن متاليكي (METALLIC IRON): در اين سيستم عمل انبساط مربوط مي شود به اكسيدي كه حاصل عكس العمل شيميايي يونهاي كلريدي در يك محيط (MEDIUM) قليايي است كه باعث خوردگي (CORROSION) يا زنگ زدگي (OXIDATION) آهن شده و نتيجتاً حجم بيشتري را ايجاد مي نمايد.
(پ) سولفات كلسيم (GYPSUM): در اين سيستم انبساط حاصله در اثر توليد كلسيم سولفو آلومينات (CALCIUM SULPHO ALUMINATE) مي باشد كه از تركيب شيميايي سولفات كلسيم با تري كلسيم آلومينات به وجود مي آيد.
3-11-1-7 جدا شدن (SEGREGATION)
جدا شدن (SEGREGATION) در اصطلاح به عملي اطلاق مي گردد كه طي آن اجزاي تشكيل دهندهء يك مخلوط از يكديگر جدا مي شوند. وقتي عمل جدا شدن (SEGREGATION) به وقوع مي پيوندد، ذرات (PARTICLES) سنگينتر تمايل به ته نشين شدن داشته و در نتيجه ذرات سبكتر در قسمتهاي بالا قرار مي گيرند. در نتيجه به خاطر اينكه مخلوط حالت يكنواختي خود را از دست مي دهد، ضعفهايي در سيستم ايجاد شده و باعث خرابي و گسيختگي نهايي آن مي گردد. اين مشكل معمولاً با استفاده از برخي مواد افزودني قابل بر طرف شدن مي باشند. مواد افزودني باعث مي شوند قدرت چسبندگي درون مخلوط (COHESIVE STRENGTH) افزايش يابد.
3-11-1-8 نفوذ آب دريا به سيستم تعميري (PERMEABILITY TO SEA WATER)
در رابطه با مسأله نفوذ پذيري، دو مرحلهء كاملاً متمايز را مي توان تعريف نمود:
يكي نفوذ پذيري لايه سخت شده كه براي حفاظت از بتن مادر يا سازه زيرين به كار رفته است و ديگري ميزان نفوذ (PENETRATION) آب دريا به درون مخلوط تازه سفت نشده.
راجع به مسأله دوم يعني نفوذ آب دريا به درون مخلوط تازه بايد گفت، مشكلات حاصله تا حدي به مشكلات شسته شدن (WASHOUT)، آب انداختن (BLEEDING) و جدا شدگي (SEGREGATION) شباهت دارند كه در مباحث قبلي به آنها اشاره شد. اما به دليل آنكه نفوذ پذيري سازه هاي بتني دريايي از اهميت بسيار بالايي برخوردار است، انواع مختلف آب بند كننده ها (WATER PROOFERS) موجود مي باشد كه مي توان با افزودن آنها به مخلوط تازه، نفوذ پذيري لايهء تعميري سخت شده را كاهش داد.
3-11-1-9چسبندگي به بتن قديمي (بتن مادر)
(ADHESION TO THE SUBSTRATE CONCRETE)
يكي از وظايف مهم يك سيستم تعميري، حفاظت از سطحي است كه بر روي آن اعمال مي شود. پر واضح است تا وقتي كه چسبندگي لازم و كافي بين لايه تعميري و بتن قديمي وجود نداشته باشد، لايه تعميري از انجام اين وظيفه باز خواهد ماند. براي بهبود خاصيت جسبندگي مخلوط هاي ساخته شده از سيمان پر تلند معمولي، مولكولهاي آلي با زنجيره هاي طولاني، مانند استيرن بوتادين (STYRENEBUTADIENE RUBBERS) به سيستم افزوده مي گردد. گفته مي شود كه اين افزودنيهاي پليمري مقاومت چسبندگي و كششي مخلوط را بهبود مي بخشند.
استيرن (STYRENE) و بوتادين (BUTADIENE) را مي توان به حالت تك مولكولي(MONOMER) در آب مخلوط EMULSIFY كرده، سپس با اضافه نمودن پخش كننده هاي (DISRERSANT) مناسب (COMPATIBLE)، آن را به طور معمولي به آب مخلوط افزود.
عليرغم ادعاهايي كه توسط توليد كنندگان در رابطه با سيستمهاي تعميري اصلاح شده با پليمر مي شود، تحقيقات انجام شده در اين زمينه نسبتاً جوان بوده و اطلاعات كمي در مورد دوام و پايايي بتنهاي پليمري در دراز مدت در دست مي باشد.

ریپورتر
27th March 2010, 03:04 PM
روشهای جدید ترمیم سازه های بتنی

خوردگی یکی از مؤثرترین فاکتورها در تعیین عمر اقتصادی برای ساختمانها می باشد. خوردگی نتیجه یک سری فعل و انفعالات شیمیایی در بتن و آرماتور ها می باشد. در بتن آرماتورها توسط بتن، محافظت می گردد. (PH=۱۳) بالا که از خصوصیات بتن می باشد PH بالا کاهش یابد، محافظت بتن از روی آرماتورها حذف می گردد. این جزء از PH زمانی که این مقاطع بتنی زنگ می زند،این زنگ زدگی باعث افزایش حجم میلگردها می گردد که این موضوع موجب ایجاد ترک در مقطع به موازات میلگردها خواهد شد. زمانیکه بتن ترک خورد میلگرد به طور کامل در معرض اثرات جوی و عوامل خوردگی قرار می گیرد که این خود باعث کاهش عمر ساختمان خواهد گردید.


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/Aban/06/00002001.jpg
از عوامل دیگر خوردگی در بتن یک واکنش شیمیایی با نام کربناسیون در مقطع بتنی است که عامل آن یون های فعال کلسیم که ناشی از هیدراسیون سیمان است، می باشد. این یون های فعال به سرعت با گازهای جو و رطوبت هوا واکنش انجام داده و باعث ایجاد ترکیبات شیمیایی پیچیده می گردد که سبب تغییرات در مشخصات مقطع واحد گردید. این زنجیره از واکنشهای شیمیایی به سرعت بتن را کاهش داده و بنابراین باعث شروع خوردگی در میل گردها می گردد. در ادامه PH سیمان نیز خواص خود را از دست می دهد و قابلیت تحمل خمش در آن به شدت کاهش می یابد. در واقع یک روش ترمیم بتن است که برای مقاطع بتنی که مقاومت خود را در اثر Izo-BTS خوردگی از دست داده اند و یا آنکه در هنگام اجرا در اثر عدم دقت کافی به مقاومت مورد نظر نرسیده اند و یا در اثر زلزله دچار تخریب شده اند، استفاده می گردد. با توجه به مراحل کار در این روش ابتدا قسمتهای ضعیف مقطع بتنی که مقاومت لازم را ندارند توسط روشهای مکانیکی تخریب می گردد که لازمه آن، در ابتدای کار قبل از تخریب، تعیین عمق دقیق نفوذ خوردگی در مقطع است که توسط آزمایشات خاصی این عمق و نواحی که ترمیم باید در آن انجام شود مشخص می گردد. ترمیم می گردد، این ماده در مرحله بعد سطح بتن توسط ماده ای خاص با نام IZOMET-BRM دارای شباهت زیادی با بتن می باشد اما قابلیتها و خواص آن چه به لحاظ مشخصات ساختمانی و چه به لحاظ مقاومت در برابر عوامل خوردگی بسیار بالاتر از بتنهای معمولی است.

تقویت.سازه.های.بتنی

هدف در این روش مقاوم سازی سازه ها در مقابل زلزله و یا بالا بردن مقاومت سازه بنا بهنیازمواردی همچون تغییر کاربری ساختمان و یا اشتباه درمحاسبات اولیه طراح می باشد. در این روش علاوه بر بدست آوردن مشخصات مورد نظر به لحاظ ساختمانی مسایل معماری ساختمان و زیبایی بنا نیز مد نظر است بدین صورت که در این روش بعد از اتمام کار سطح مقطع اجزا ساختمان تغییراتی نخواهد داشت. روش کار بدین صورت است که یک سری ورقهای فولادی با توجه به محاسبات انجام شده و مقاومت موردنظر از خارج مقطع توسط یک نوع Steel-plates اپوکسی خاص به مقطع اضافه می گردد. طراحی این فولادها و مقادیر آن با توجه به محاسبات اولیه ساختمان و نیز مشخصاتی از مقطع که در نظر داریم به آن برسیم انجام می گیرد. مراحل انجام کار و نیز مواد استفاده شده به صورتی است که بعد از پایان مقطع جدید و قدیم به خوبی با یکدیگر کار می کنند.

بتن بهتر است یا فولاد ؟

هر روز هنگام عبور از خیابانهای شهر شاهد ساخت و سازهای روز افزونی هستیم، ساختمانهای مختلف از یک طبقه تا ۶۰ طبقه که جلوی آنها انواع مصالح دیده میشود؛ سازههایی که گاه از بتن ساخته میشوند و گاه از فولاد. در مورد اینکه کدام نوع سازه بر دیگری برتری دارد، اختلاف نظر شدیدی بین سازندگان ساختمانها وجود دارد. معمولاً معیارهای ساخت، جوابهای متفاوتی برای ما به همراه دارند.
عمده عوامل مؤثر در این روند، هزینه، زمان و کیفیت ساخت هستند.هزینه ساخت و سود حاصل از این سرمایهگذاری با زمان اتمام طرح رابطه تنگاتنگی دارند. بدیهی است هر چه زمان طرح طولانیتر شود شاهد افزایش قیمت مصالح، قیمت تمام شده طرح، هزینههای متفرقه و بازگشت دیرتر سرمایه خواهیم بود که خوشایند هیچ سازندهای نیست.
سازههای بتن آرمه در مقابل سازههای فولادی معمولاً نیاز به هزینه کمتر و زمان بیشتری برای ساخت دارد؛ در حالیکه سازههای فولادی ابتدا نیاز به سرمایه زیادی برای خرید آهن آلات دارد ولی در عوض شاهد سرعت اجرای بالاتری خواهیم بود.بنابراین در ساختمانهای عادی کمتر از ۶ طبقه در نهایت از این منظر تفاوت زیادی وجود ندارد.
در اسکلتهای فولادی حتماً باید تمام اسکلت آماده باشد تا بتوان سقف را اجراکرد. به عبارت دیگر اول باید تیر و ستونهایی وجود داشته باشد تا بتوان روی آن سطحی به نام سقف یا همان کف اجرا کرد. در حالیکه در سازههای بتن آرمه ابتدا ستونهای هر طبقه و سپس سقف همان طبقه که خود مشتمل بر تیرها و کف یکپارچهتری نسبت به سازههای فولادی است اجرا میشود.
مزیت این روش نسبت به روش اول آن است که میتوان طبقه مورد نظر را سریعتر برای اجرای دیگر مراحل از جمله تیغه چینی، اجرای تأسیسات مکانیکی و برقی و... در اختیار سایر پیمانکاران قرار داد که خود موجب تسریع در روند طرح خواهد بود.
ولی بهطور کلی زمان اجرای سازههای فولادی در مقیاسهای بزرگ تا حدودی کوتاهتر از سازههای بتن آرمه و هزینههای سازههای بتن آرمه کمتر از سازههای فولادی است که هر سازندهای با توجه به شرایط و معیارهای خود تصمیمگیرنده اصلی است.
حال با فرض وجود شرایطی کاملاً ایدهآل، یعنی عدموجود محدودیت زمان و هزینهها، عامل سوم یعنی کیفیت سازه را بررسی میکنیم. کیفیت را میتوان از جنبههای متفاوتی مانند مقاومت در برابر بارهای ثقلی وارده و زلزله، مقاومت در برابر حرارت، ابعاد، دهانههای قابل پوشش، تعداد طبقات قابل طراحی، قابلیت ترمیم آسان و... مورد نقد و بررسی قرار داد. با توجه به گستردگی و پیچیدگی مسئله، در اینجا فقط تصمیمگیری برای ساختمانهای عادی را مورد توجه قرار میدهیم.
اولین و مهمترین نکته قابل ذکر در این مورد مقاومت مصالح و ابعاد مصالح مصرفی است. معمولاً هر چه اعضای باربر ما ابعاد بزرگتر از نگاه عام و ممان اینرسی بالاتر از دید مهندسی داشته باشد، رفتار سازهای مناسبتر است و هر چه مصالح مصرفی که در عرف ساختمانسازی بتن یا فولاد هستند قابلیت تحمل نیروهای بیشتر را داشته باشند منجر به طراحی اعضای ظریفتری خواهند شد.
اگر هر دو عامل در کنار هم قرار گیرند منجر به رسیدن به سختی و صلبیت بالاتری خواهند شد که جزء اصلیترین آیتمهای طراحی یک مهندس محاسب به شمار میروند.
در طراحی سازهها، مقاومت بتن را ۱۰ درصد مقاومت فولاد فرض میکنند بنابراین ابعاد ستونها و تیرهای بتنی، بهمراتب بیش از سازههای فولادی است. البته این ابعاد بزرگ اعضای بتنی، ممان اینرسی بسیار بالاتری نسبت به گزینه دیگر به ارمغان خواهند آورد که در نهایت سازه بتنی، سختی بالاتر و معمولاً رفتار سازهای مناسبتری دارد.
« سازههای بتنی سنگین هستند.» در پاسخ به این ایراد باید گفت: ابعاد بزرگ سازه تا جایی مورد پذیرش یک مهندس است که منجر به سنگینی بیش از حد سازه نشود و با توجه به آنکه بحث ما در مورد سازههای عادی کمتر از ۶ طبقه است تفاوت وزن اسکلت نیز آنچنان نخواهد بود تا مهندس طراح را به سمت طراحی سازه فولادی بکشاند. این موضوع در بسیاری از سازههای عظیم نیز صادق است که برج ۵۶ طبقه تهران نمونه بارزی از این دست است.
بحث زلزله که بحث داغ این روزهای تهران است میتواند جنبه دیگری از کیفیت مناسب یک سازه باشد. سازههای بتن آرمه عادی و به ویژه مجهز به دیوارهای بتنی بهعلت سختی بالا نسبت به سازههای فولادی در برابر زلزله، در بیشتر موارد مقاومت بسیار بالایی از خود نشان میدهند اما سازههای فولادی نیز میتوانند همین رفتار را از خود نشان دهند مشروط برآنکه طراحی مناسبی داشته باشند.
نکته قابل تامل اینجا است که این رفتار به چه قیمتی به دست خواهد آمد؟ اگر طراحی، یک طراحی بدون نقص باشد، هم سازه فولادی و هم سازه بتن آرمه در چند ثانیه وقوع زلزله، با حداقل خسارت ممکن جان سالم به در خواهند برد. اما کار به اینجا ختم نخواهد شد و پس از زلزلههای زیادی شاهد شکستگی لولههای گاز و وقوع آتش سوزیهای مهیب بودهایم که گاه از خود زلزله مخربتر هستند.
با توجه به اینکه اطفاء حریق بلافاصله بعد از وقوع حادثه ممکن نیست، ساختمان باید به گونهای طراحی شود که تا چند ساعت متوالی بتواند آتش را با حداقل خسارات وارده تحمل کند. در سازههای بتن آرمه مقاومت بالایی در برابر آتش سوزی وجود دارد، اما درسازههای فولادی درصورتیکه تمهیدات ایمنی لازم در آنها صورت نپذیرد در چند دقیقه ابتدایی حریق، شاهد تخریبهای بسیار سریع و غیرقابل جبران خواهیم بود که این مورد نیز مزیتی بسیار ارزشمند برای سازههای بتن آرمه به حساب میآید.
اما آنچه اکثر مهندسان را نسبت به سازههای بتن آرمه به شدت بدبین کرده، عدمقطعیتها، یکنواخت نبودن مقاومت بتن و کم اطلاعی بسیاری از سازندگان از نحوه عملآوری و به دست آوردن نتیجهای مطلوب از این ماده است.
قابلیت اشتباه در تهیه بالقوه این نوع ماده در مقابل فولاد توجیه دیگری است که از سوی عده زیادی در مخالفت با بتن ارائه میشود، چراکه ممکن است حین عمل آوری، مقاومت فشاری کمتر از حد مورد نیاز به دست آید.
این گروه معتقدند جبران یک اشتباه در سازههای بتن آرمه در مواردی منجر به تخریب اجباری سازه میشود در حالیکه فولاد در هر لحظه که سازنده اراده کند با هزینهای به نسبت پایین قابل ترمیم و تقویت است
در پاسخ به این ایراد باید گفت این عدمقطعیتها در آیین نامهها با اعمال ضریب ایمنی بسیار بالایی پیشبینی شده تا جایی که در موارد زیادی شاهد مقاومتی چند برابر مقاومت مورد نیاز در ساخت این قبیل سازهها هستیم.از سوی دیگر این عدمقطعیت کیفیت بتن در شالوده و سقفهای سازه فولادی نیز وجود دارد و صرفاً متعلق به سازههای بتن آرمه نیست.
در نهایت باید بر این موضوع تاکید کرد که بهطور کلی هم سازههای فولادی و هم سازههای بتن آرمه درصورتی که در طراحی آنها سیستم مناسب و منطبق بر آییننامههای به روز، مورد استفاده قرار نگیرد و متخصصین متبحر آنها را اجرا و مهندسین با تجربه بر اجرای آنها نظارت مستمر نکنند، هیچ رجحانی از نظر کیفیت و قابلیت اطمینان بر دیگری ندارند.
فراموش نکنیم معیار چهارمی نیز در انتخاب وجود دارد؛ معیاری که ۳ معیار هزینه، زمان و کیفیت را تحت سیطره خود قرار میدهد: فولاد بهعنوان یک سرمایه ملی مادهای است که ارزان به دست نمیآید و همانند نفت روزی تمام خواهد شد؛ مادهای که باید در صنایع ارزشمندتر و یا حداقل در سازههای خاص که نیاز به ظرافت خاصی دارند و پس از بررسیهای علمی برتری فولاد در آن محرز شده، مورد استفاده و بهره برداری قرار گیرد تا شاهد رشد اقتصادی در دیگر زمینهها باشیم.
بهنظر نویسنده استفاده از سازههای بتن آرمه با توجه به مصرف بهمراتب پایینتر از فولاد (بهصورت میلگرد) هم از نظر سازهای و هم از نظر اقتصادی و هم از جنبه ملی بهمراتب مناسبتر و بهینهتر از سازههای فولادی است.

نکات اجرایی حائز اهمیت در سازه های بتنی

1- باید توجه داشت که خم میلگردها به طرف پائین یا داخل المان و خارج از ناحیه پوشش بتنی قرار داشته باشد.
2- عملیات جوشکاری میلگردها در محیطی با دمای زیر -18 درجه سلسیوس مجاز نیست.
3- بعد از پایان پذیرفتن جوشکاری بایستی اجازه داد تا میلگردها به طور طبیعی تا دمای محیط سرد شود،شتاب دادن به فرآیند سرد شدن مجاز نیست.
4- کاربرد همزمان چند نوع فولاد با مقاومت های مشخصه متفاوت در یک المان بتنی مجاز نیست مگر اینکه در نقشه های اجرائی، مهندس محاسب قید کرده باشد.
5- برای مهار میلگردهای فشاری نبایستی از قلاب و خم استفاده نمود.
6- برای میلگردهای با سطح صاف(بدون آج) استفاده از مهارهای مستقیم مجاز نیست.
7- خم کردن میلگردها انتظار باید قبل از قالب بندی انجام گیرد.
8- میلگردهای ساده با قطر بیش از 12 میلیمتر را نباید بعنوان خاموت بکار برد.
9- قطر خاموت ها نباید از 6 میلی متر کمتر باشد.
10- مناسب ترین محل قطع و وصله میلگردهای طولی ستون بتنی،در نصف ارتفاع آن است.
11- محل مناسب برای وصله کردن میلگردهای طولی تیرهای بتنی،بیرون از گره تیر با ستون و در محدوده یک چهارم تا یک سوم از طول دهانه از تکیه گاه است.

اثرات مواد زیان آور بر خواص یتن

1. کربنات سدیم » گیرش سیمان را تسریع می کند،با حداکثر غلظت 0.1%
2. بی کربنات سدیم » گیرش سیمان را تسریع یا کند می کند با حداکثر غلظت 0.4% تا 0.1%
3. کلرورها » تسریع در زنگ زدگی آرماتور و کابل های پیش تنیدگی.بیش از 0.06% در بتن پیش تنیده و 0.1% در بتن آرمه خطرناک است.
4. سولفاتها » اثر نامطلوب روی بتن.به ازای هر 1% سولفات در آب،10% کاهش مقاومت بوجود می آید.
5. فسفاتها،آرسنات ها و براتها » افزایش زمان گیرش.حداکثر غلظت 0.05%
6. نمک های مس،روی،سرب،منگنز،قلع » افزایش زمان گیرش.حداکثر غلظت 0.05%
7. آبهای اسیدی » در صورت وجود اسید کلریدریک و اسید سولفوریک و سایر اسیدهای غیرآلی،حداکثر تا 0.1% بلامانع است و آبهای با 4.5<8.5< FONT> مجاز نیست.
8. آبهای قلیایی » در صورت وجود بیش از 0.5% هیدروکسید سدیم و 1.2% هیدروکسید پتاسیم ( نسبت به وزن سیمان ) باشد،مقاومت بتن تقلیل می یابد.
9. آبهای گل آلود » قبل از مصرف از حوضچه های ته نشینی عبور داده و یا به روش دیگر تصفیه کرد.
10. آب دریا » با حداکثر 3.5% نمک محلول برای ساخت بتن ( بدون آرماتور ) بلامانع است.
11. مقاومت بتن ساخته شده با آب دریا بین 10% تا 20% کاهش می یابد.

سنگدانه ها

• بهترین منابع سنگدانه ها،در محل رودخانه ها می باشد که بسیار ساده و ارزان استخراج می گردند.
• دانه های درشت رودخانه ای عموما گرد و دارای دانه بندی مناسب ولی مقاومت بتن ها کمتر می باشند.
• مصرف سنگدانه های طبیعی (گرد گوشه با سطح صاف) در بتن،کارآئی بهتری می دهد.
• سنگدانه های شکسته که تیزگوشه می باشند کارآئی کمتر ولی مقاومت خمشی و فشاری بیشتری دارند.
• بهترین سنگدانه برای تهیه بتن،سنگدانه های سیلیسی هستند.سختی آنها بین 6 تا 7 (از 10 که مربوط به الماس است.) می باشد.ولی برای بتن های معمولی بیشتر از سنگدانه های آهکی استفاده می شود که سختی آنها بین 3 تا 4 است.
• مقدار آب همراه شن به لحاظ کم بودن آن قابل صرفنظر است ولی آب همراه با ماسه که گاهی به 50 تا 60 لیتر بر مترمکعب ماسه می رسد و قابل ملاحظه است و بایستی در زمان بتن ریزی مورد توجه قرار بگیرد.
• سنگدانه های مصنوعی که از گرد حاصل از سوزانیدن زباله ها و یا سرباره کوره های ذوب آهن و غیره بدست می آید و حاوی مقادیری فلزات و دیگر مواد سخت می باشند می توان برای ساخت بتن های غیرباربر استفاده نمود.امروزه بیش از 40 درصد بتن های مصرفی در کارگاه باربر نیستند و با استفاده از این روش می توان کمک شایانی به حفظ محیط زیست نمود.
منابع مورد استفاده در مقاله:
Aftab.ir
www.nano.ir
http://fa.wikipedia.org/
http://www2.irib.ir/
daneshname.roshd.ir
http://www.mohandesi-sakhteman.blogfa.com
ww.web.khedu.ir
http://www.mohandesi-sakhteman.blogfa.com
http://khakzad.com
علم و فن دات کام

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد