PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : نانوذرات آهن



ghasem motamedi
11th January 2010, 11:43 PM
پيشرفت‌هاي سميت‌زدايي ترکيبات آلي کلرداربا نانوذرات آهن
خلاصهاستفاده از نانوذرات آهن، يک فناوري نوين در احياي ترکيبات سمي کلردار محسوب مي‌شود. تحقيقات نشان مي‌دهند که نانوذرات آهن مي‌توانند به عنوان عامل احياکننده و کاتاليزور در سميت‌زدايي تعداد زيادي از آلاينده‌هاي محيط‌زيست، مانند حلال‌ها، آفت‌کش‌هاي آلي کلردار و بي‌فنيل‌هاي پلي‌کلريد عمل کنند. با کوچک شدن اندازه ذرات آهن در حد نانو، سطح ويژه و در نتيجه فعاليت سطحي ذرات افزايش مي‌يابد. در راستاي توسعة فناوري‌نانوذرات آهن براي اصلاح آب، نانوذرات دوفلزي که از رسوب‌دهي يک فلز کاتاليزور بر روي ذرات آهن تشکيل مي‌شود، تهيه شده‌است. بررسي سازوکار ذرات دوفلزي نشان مي‌دهد که واکنش احياي ترکيبات آلي کلردار از طريق هيدروژني که در سطح فلز کاتاليزور تشکيل مي‌شود، انجام مي‌گردد. بر اساس نتايج به‌دست‌آمده، سرعت و بازده هالوژن‌زدايي نانوذرات دوفلزي نسبت به نانوذرات آهن بيشتر است. محصولات نهايي در اين روش به‌طور عمده شامل هيدروکربن‌هاي اشباع مثل متان، اتان، بوتان، هگزان و اکتان است.

مقدمه

رشد روزافزون جمعيت کشورها و فعاليت‌هاي صنعتي و کشاورزي از يک سو و رعايت نكردن الزامات زيست‌محيطي از سوي ديگر، سبب شده‌است تا در چند دهة اخير، مقادير زيادي از آلاينده‌ها مانند هيدروکربن‌هاي آلي کلردار به‌واسطة عواملي نظير دفع نامناسب پساب‌ها و ضايعات مراکز صنعتي و شهري، استفادة وسيع از آفت‌کش‌ها، علف‌کش‌ها و. . . ، به منابع آب‌هاي زيرزميني وارد و موجب کاهش کيفيت آب شوند [1]. حلال‌هاي آلي کلردار مثل تتراکلرواتن، تري‌کلرواتن، دي‌کلرواتن و وينيل‌کلرايد از جمله رايج‌ترين آلاينده‌ها هستند. ترکيبات آلي کلردار، که بسيار سمي و غيرقابل تجزية زيستي هستند، جزء شايع‌ترين و متداول‌ترين آلاينده‌هاي آب‌هاي زيرزميني به شمار مي‌روند [2]. ترکيبات آلي کلردار ضمن ايجاد اثرات سمي بر دستگاه اعصاب، خاصيت سرطان‌زايي نيز دارند [3].
از اواسط سال 1990، پيشرفت‌هاي مهمي در تبديل آلاينده‌هاي آلي کلردار به محصولات بي‌ضرر نظير متان، اتان، با استفاده از فلزات ظرفيت صفر مثل قلع، روي، پالاديوم و آهن صورت گرفت که آهن رايج‌ترين اين فلزات است. در اين فناوري ابتدا از براده‌هاي آهن و سپس از کلوئيدهاي آهن در اندازة ميکروني استفاده شد [4].
مطالعات وسيع در 15 سال اخير ثابت کرده‌است که آلاينده‌هاي محيط‌زيست مي‌توانند از طريق اکسيداسيون آهن ظرفيت صفر احيا شوند. بازده سميت‌زدايي، قيمت پايين و بي‌خطر بودن آهن، باعث توسعة يک روش نوين در احياي آلايندهاي محيط زيست به ويژه در آب‌هاي زيرزميني شده‌است [4].
عموماً واکنش بين ترکيبات آلي کلردار (CxHyClz) و آهن در محلول آبي به‌صورت زير بيان مي‌شود.
(1) http://nano.ir/images/paper/501_files/image001.gif http://nano.ir/images/paper/501_files/image002.gif
که در آن آهن به عنوان عامل کاهنده در حذف کلر رفتار مي‌کند. اين واکنش مشابه فرايند خوردگي آهن است که در تغيير شکل آلاينده‌هاي کلردار مفيد است [5].


http://nano.ir/images/paper/501_files/image003.jpg
شکل (1) تصوير TEM نانوذرات آهن [9]

فناوري استفاده از نانوذرات آهن در احياي آلاينده‌هاي کلردار حرکت جديدي است که نسبت به روش‌هاي قبلي بسيار اقتصادي‌تر و کارامدتر است. زماني که اندازة ذرات آهن به مقياس نانو کاهش مي‌يابد تعداد اتم‌هايي که مي‌توانند در واکنش درگير شوند افزايش، و در نتيجه سرعت واکنش‌پذيري بيشتر مي‌شود. اين امر موجب مي‌شود که نانوذرات آهن قدرت انتخاب‌پذيري بيشتري نسبت به براده‌هاي آهن داشته باشند [6].
اگر چه استفاده از نانوذرات آهن به جاي ميکرو و يا براده‌هاي آهن در احياي آلاينده‌ها بسيار مؤثر بود و حتي در اين فناوري موفق به احياي پرکلرات‌ها شدند که با روش‌هاي قبلي امکان‌پذير نبود، ولي مشاهده شده‌است که در بعضي موارد، محصولات واکنش به مراتب سمي‌تر از ماده اوليه هستند. به عنوان مثال از احياي تري‌کلرواتيلن مي‌تواند وينيل‌کلرايد تشکيل شود که بسيار سمي است [7 و2].
درمسير توسعة فناوري‌نانوذرات آهن در اصلاح آب و خاک، گروه ژنگ (zhang) نانوذرات دوفلزي آهن- پالاديوم را در سال 1996 سنتز كردند. پس از آن در روش‌هاي مشابهي از فلزات کاتاليزوري ديگر مثل پلاتين، نقره، نيکل، کبالت و مس براي تهيه نانوذرات دو فلزي با آهن استفاده شد. بررسي نانوذرات دوفلزي نشان مي‌دهد که سرعت و بازده سميت‌زدايي اين ذرات بيشتر از آهن است. حضور يک عامل کاتاليزوري باعث مي‌شود که سرعت واکنش هالوژن‌زدايي بيشتر و از تشکيل محصولات جانبي سمي جلوگيري شود [8].
روش آزمايشگاهي سنتز نانوذرات آهن از ابتکاراتي است که اولين بار در سال 1996 توسط ژنگ انجام شد. در اين روش، آهن فريک به‌وسيله بوروهيدرايد سديم طبق واکنش زير احيا مي‌شود [9]:
(2) http://nano.ir/images/paper/501_files/image004.gif
براي تهيه نانوذرات دوفلزي آهن- پالاديوم، نانوذرات آهن تازه‌تهيه‌شده به محلولي از اتانول و استات پالاديوم اضافه مي‌شوند. اين امر طبق واکنش زير منجر به ته‌نشيني پالاديوم بر سطح آهن مي‌شود:
(3) http://nano.ir/images/paper/501_files/image005.gif
در اين روش از آهن به عنوان فلز پايه و از از پالاديوم به عنوان فلز کاتاليزگر استفاده مي‌شود. تصاوير ميکروسکوپ الکتروني عبوري نانوذرات آهني که به اين روش سنتز شدند، نشان مي‌دهند که بيشتر از 90 درصد ذرات، قطري در حدود يک تا صد نانومتر دارند [9].
سازوکار نانوذرات آهن
بررسي واکنش‌هاي احياي نانوذرات آهن در محلول‌هاي آبي نشان مي‌دهد که آهن فلزي، يون فرو و هيدروژن گازي احياکننده‌هاي اصلي در محيط هستند. احياي آلاينده‌ها در سطح آهن مي‌تواند از طريق انتقال الکتروني و يا تشکيل هيدروژن انجام شود [10].
بررسي سازوکار نانوذرات دوفلزي Ni-Fe نشان مي‌دهد كه همزمان با قرارگيري ذرات دوفلزي Ni-Fe در يک محلول آبي، يک پيل گالواني تشكيل مي‌شود كه Fe به فلز کاتاليزور الکترون مي‌دهد و Ni به‌وسيلة آهن، حفاظت کاتدي مي‌شود. زماني که آهن اکسيد مي‌شود، با آب تشکيل هيدروکسيد و يا اکسيد آهن مي‌دهد و پروتون‌ها روي سطح Ni به اتم‌هاي هيدروژن و مولکول هيدروژن تبديل مي‌شوند [2]. براساس اين سازوکار، واکنش هالوژن‌زدايي از طريق هيدروژن جذب‌شده بر روي کاتاليزور Ni-Fe به‌سرعت انجام مي‌شود [8‍].
(4) http://nano.ir/images/paper/501_files/image006.gif
(5) http://nano.ir/images/paper/501_files/image007.gif
ترکيب هالوژن‌دار روي سطح ذرات Ni-Fe جذب و پيوند C-Cl شکسته مي‌شود. سپس، اتم کلر جايگزين هيدروژن مي‌گردد (شکل 2) [2].


http://nano.ir/images/paper/501_files/image008.jpg
شکل (2) تصويري از سازوکار واکنش هالوژن زدايي يک ترکيب آلي کلردار با نانوذرات Ni-Fe ] 2[
با توجه به مطالب فوق، سازوکار نانوذرات دوفلزي در واکنش‌هاي هالوژن‌زدايي موجب تشکيل هيدروژن مي‌شود. در حالي‌که ذرات تک‌فلزي و همچنين مخلوط فيزيکي دوفلز عملکرد متفاوتي دارند. اين موضوع از طريق اندازه‌گيري ميزان هيدروژن توليدشده در آب به‌وسيلة نانوذرات آهن، نانوذرات نيکل، نانوذرات دوفلزي Ni-Fe و مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل ثابت شده‌است.


http://nano.ir/images/paper/501_files/image009.jpg
شکل (3) مقايسة مقدار هيدروژن توليدشده از واکنش نانوذرات دوفلزي، تک‌فلزي و مخلوط آن‌ها با آب. مربع مربوط به نانوذرات آهن، دايره‌ مربوط به نانوذرات نيکل، لوزي‌، مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل و مثلث مربوط به نانوذرات Ni-Fe است [2].
مطابق شکل (3) ميزان هيدروژني كه نانوذرات دوفلزي Ni-Fe توليد مي‌كند، بيشتر از بقية ذرات است و اين مي‌تواند به‌دليل تماس الکتروني بين دو فلز آهن و نيکل باشد [2].



http://nano.ir/images/paper/501_files/image010.gif
شکل (4) ميزان گاز هيدروژن (molμ) که به‌وسيلة نانوذرات Ni-Fe در آب و در يک دورة زماني طولاني توليد شده‌است [2]

شکل (4) نشان مي‌دهد که سرعت تشکيل هيدروژن در ابتداي واکنش به‌شدت افزايش يافته و با گذشت زمان، سطح آهن غيرفعال و سرعت واکنش کند مي‌شود [2].
محصولي که در ابتدا از کلرزدايي تري‌کلرو‌اتيلن به‌وسيلة نانوذرات Ni-Fe به دست مي‌آيد، شامل اتيلن و بوتن است که با پيشرفت واکنش، آلکان‌هاي زنجيره‌اي و شاخه‌دار (C1-C8) علاوه بر اولفين‌ها تشکيل مي‌شوند. پس از يک دورة زماني طولاني، آلکن‌ها به طور کامل احيا مي‌شوند و آلکان‌هايي با تعداد کربن زوج، مثل بوتان، هگزان و اکتان توليد مي‌کنند. محصولات داراي کربن زيادتر به‌علت شکستن پيوند C-C به‌وسيلة کاتاليزور Ni تشكيل مي‌شوند [2].
نتيجه‌گيري مطالعات انجام‌شده بر روي هالوژن‌زدايي ترکيبات آلي کلردار به‌وسيلة آهن، نشان مي‌دهد که مرحله تعيين کننده سرعت، مرحلة انتقال الکترون به مولکول جذب سطحي شده‌است. اين سازوکار بيان مي‌کند که سرعت احياي دي‌کلرو‌اتيلن و وينيل‌کلرايد که پذيرنده الکترون ضعيف‌تري نسبت به تري‌کلرو‌اتيلن هستند، کندتر است. در بررسي تأثير آهن در احياي تري‌کلرو‌اتيلن مشاهده شده‌است که بعضي از محصولات واکنش احيا، مثل وينيل‌کلرايد، مي‌توانند به مراتب سمي‌تر از ترکيبات اوليه‌شان باشند. همان‌طورکه قبلاً بيان شد، واکنش هالوژن‌زدايي آلاينده‌هاي آلي کلردار با نانوذرات دوفلزي از طريق احياي هيدروژن صورت مي‌گيرد. بنابراين، سرعت واکنش احيا به‌وسيله نانوذرات دوفلزي، به مراتب بيشتر از واکنش احيا از طريق انتقال الکتروني است. افزايش سرعت واکنش آلاينده‌ها، از تشکيل محصولات فرعي سمي جلوگيري مي‌کند. همچنين با استفاده از نانوذرات آهن مي‌توان برخي از آلاينده‌هاي بسيار مقاوم مثل پرکلرات را تجزيه کرد.
اين روش به‌راحتي در شرايط محيطي قابل استفاده است و نياز به فراهم نمودن شرايط خاصي مثل دماي بالا وجود ندارد.
مراجع:

[1] کماني، ح. ، شهوري، م. ، احمدي مقدم، م. ، "آفت‌کش‌ها تهديدي جدي براي منابع آب"، مجلة آب و محيط زيست، شمارة 62، ص 17-20، شهريور 1384.
[2] Schrick, B. Et al. , “Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles”, Chem. Mater. , Vol. 14, pp. 5140-5147, 2002.
[3] ربيعي راد، م. ح. ، اميرپور، ر. ، رئيسي، غ. ، نظري، ز. ، رادفرنژاد، آ. ،
"بقاياي سموم آلي کلردار در رودخانة کارون"، مجلة آب و محيط زيست، شمارة 62، ص 7-11، شهريور 1384 .
Gillham R. W. & S. F. O’Hannesin,"Enhanced degradation of halogenated aliphatics by zero- valent iron", Ground Water, Vol. 32, pp. 958–967, 1994.
[5] Zhang, W. X. , Wang, C. B. , Lien, H. L. , "Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles", Catalysis Today, Vol. 40, pp. 387-395, 1998.
[6] Ponder, Sh. M. , Darab, J. G. , Mallouk, T. E. , "Remediation of Cr (Vl) and Pb (II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron", Environ. Sci. Technol. , Vol. 34, pp. 2564-2569, 2000.
[7] Cao, J. , Elliott, D. , Zhang, W. X. , "Perchlorate Reduction by Nanoscale Iron Particles", Journal of Nanoparticle Research, Vol. 7, pp. 499-506, 2005.
[8] Tong Et. al. , "Rapid Dechlorination of Chlorinated Organic Compounds by Nickel/Iron Bimetallic System in Water", J Zhejiang Univ SCI, pp. 627-631, 2005.
[9] Wang, C. B. and Zhang, W. X. , "Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs", Environ. Sci. Technol. , Vol. 31, pp. 2154-2156, 1997.
[10] Choe, S. Et al. , "Rapid Reductive Destruction of Hazardous Organic Compounds by Nanoscale Feo", Chemosphere, Vol. 42, pp. 367-372, 2001.

ghasem motamedi
11th January 2010, 11:46 PM
استفاده از نانومواد در باتري‌هاي ليتيومي
خلاصهمواد نانوساختار به دليل سطح تماس زياد، تخلخل و. . . بسيار مورد توجه صنعت باتري‌هاي ليتيومي قرار گرفته‌اند. اين مشخصات امکان انجام واکنش‌هاي فعال جديد، کاهش مسير انتقال يون‌هاي ليتيوم، کاهش سرعت جريان سطح ويژه و بهبود پايداري و ظرفيت ويژه باتري‌هاي جديد را فراهم کرده است. علاوه بر اين، مواد نانوکامپوزيتي که براي مسيرهاي هادي الکتروني طراحي مي‌شوند، مي‌توانند مقاومت داخلي باتري‌هاي ليتيومي را کاهش داده، سبب افزايش ظرفيت ويژه، حتي در سرعت جريان‌هاي شارژ/ تخلية بالا شوند.
اشاره
مواد نانوساختار به دليل سطح تماس زياد، تخلخل و. . . بسيار مورد توجه صنعت باتري‌هاي ليتيومي قرار گرفته‌اند. اين مشخصات امکان انجام واکنش‌هاي فعال جديد، کاهش مسير انتقال يون‌هاي ليتيوم، کاهش سرعت جريان سطح ويژه و بهبود پايداري و ظرفيت ويژه باتري‌هاي جديد را فراهم کرده است. علاوه بر اين، مواد نانوکامپوزيتي که براي مسيرهاي هادي الکتروني طراحي مي‌شوند، مي‌توانند مقاومت داخلي باتري‌هاي ليتيومي را کاهش داده، سبب افزايش ظرفيت ويژه، حتي در سرعت جريان‌هاي شارژ/ تخليه بالا شوند.

نانومواد به طور گسترده در علوم زيستي، فناوري اطلاعات، محيط زيست و ديگر زمينه‌هاي مرتبط استفاده گسترده‌اي دارند. اخيراً مواد نانوساختار توجه پژوهشگران براي کاربرد در تجهيزات ذخيره انرژي[1 و 2] به خصوص در انواعي که سرعت جريان شارژ و تخليه بالايي دارند، مثل باتري‌هاي ليتيومي، جلب کرده‌اند[3]. توسعه تجهيزات ذخيره انرژي با توان و دانستيه انرژي بالاتر، کليد موفقيت وسايل نقليه الکتريکي و الکتريکي هيبريدي (EV وHEV) است[ 4 و 5] و انتظار مي‌رود جايگزين حداقل بخشي از وسايل نقليه امروزي شده، مشکلات آلودگي هوا و تغييرات اقليمي را رفع کند. اين فناوري‌هاي ذخيره انرژي متکي به علوم مواد جديد هستند که به عنوان نمونه مي‌توان از توسعه الکترودهايي نام برد که قابليت شارژ و تخليه در سرعت جريان بالا را دارند.
باتري‌هاي ليتيومي قابل شارژ شامل يک الکترود مثبت (کاتد)، الکتروليت حاوي يون‌هاي ليتيوم و يک الکترود منفي (آند) هستند (شکل 1) . جنس الکترودهاي مثبت و منفي اغلب باتري‌هاي تجاري ليتيومي به‌ترتيب از LiCoO2 و گرافيت است که هر دو به عنوان جايگاه‌هاي تبادل يون‌هاي ليتيوم عمل مي‌کنند. در حين فرايند شارژ کردن باتري، يون‌هاي ليتيوم از الکترود LiCoO2 جدا، همزمان به وسيله الکترودگرافيت جذب شده و با گرفتن الکترون‌ بار کلي را خنثي نگه مي‌دارند. در حين فرايند تخليه باتري، يون‌هاي ليتيوم از الکترود منفي خارج و در همان زمان بر روي الکترد مثبت جاي مي‌گيرند.
اين فرايند الکتروشيميايي، يک واکنش اکسيد- احياي حالت جامد است که طي آن، انتقال الکتروشيميايي بار بين يون‌هاي متحرک و ساختار يک جامد هادي يون و الکترون‌ صورت مي‌گيرد. معمولاً حالت مطلوب آن است که مقدار انرژي ذخيره شده در واحد جرم يا حجم باتري تا حد ممکن بالا باشد. براي مقايسه محتواي انرژي باتري‌هاي ليتيومي، از پارامتر دانستيه ويژه انرژي ( Wh/Kg) و دانستيه انرژي (Wh/l ) استفاده مي‌شود؛ در حالي که قابليت سرعت، برحسب دانستيه ويژه توان ( Wh/Kg) و دانستيه توان (Wh/Kg ) بيان مي‌شود. براي HEVها دانستيه ويژه انرژي مورد نياز و دانستيه ويژه توان باتري‌هاي ليتيومي بايد به‌ترتيب 50Kw/kgبيش از3Wh/Kgو باشد؛ حال آنکه EVها مقادير خيلي بيشتري نياز دارند، پس به نظر مي‌رسد الکترودهاي نانوساختار اميد بخش‌ترين مسير براي رسيدن به اين هدف هستند.
به طول کلي مزاياي بالقوه الکترودهاي نانوساختار را مي‌توان به شرح زير خلاصه کرد:
1. واکنش‌هاي جديد که امکان انجام آنها با مواد توده‌اي وجود ندارد؛
2. سطح تماس زياد الکترود- الکتروليت که منجر به سرعت بيشتر شارژ و تخليه مي‌شود؛
3. مسير انتقال کوتاه‌تر الکترون‌ها و يون‌هاي ليتيوم (که امکان عمل در هدايت پايين يون‌هاي ليتيوم و الکترون‌ها يا در توان‌هاي بالاتر را فراهم مي‌کند) .
در اين مقاله برخي از نتايج تجربي اخير را که نشان‌دهنده مزاياي الکترودهاي نانوساختار است، مرور مي‌کنيم.

واکنش‌هاي جديد
در سال‌هاي اخير تلاش‌هاي زيادي در زمينه تحقيق بر روي موادي صورت گرفت که به نظر مي‌رسد در حالت توده‌اي از نظر الکتروشيميايي غيرفعالند، ولي عملکرد الکتروشيميايي خوبي در مقياس نانو از خود بروز مي‌دهند. به عنوان مثال، نانوذرات اکسيد، سولفيد، فلوئوريد و نيتريد برخي از فلزات واسطه مي‌توانند به عنوان آند در باتري‌هاي ليتيومي به‌کار روند. واکنش اين ترکيبات با ليتيوم منجر به تشکيل نانوذرات جاسازي شده در بستر LizX مي‌شود (X مي‌تواند N، F، S يا O باشد) .
فلزات واسطه با ليتيوم آلياژ فلزي تشکيل نمي‌دهند؛ بنابراين، سازوکار واکنش‌پذيري ليتيوم با فرايندهاي استخراج – الحاق ليتيوم يا آلياژ شدن ليتيوم متفاوت است. فرايند متداول استخراج- الحاق ليتيوم در شکل 1 نشان داده شده است؛ در حالي که واکنش آلياژ شدن ليتيوم به صورت زير نوشته مي‌شود:
1) http://nano.ir/images/newsletter/n112/1.JPG
که M مي‌تواند Sn، Si، Pb، Bi، Sb، Ag، Al يا يک آلياژ مرکب باشد. در عوض، سازوکار واکنش ترکيبات فلزات واسطه با Li در حين فرايند شارژ و تخليه، شامل تشکيل و رسوب LizX به همراه احيا و اکسيد شدن نانوذرات فلزي است.
مکانيسم کلي به وسيله معادله زير توصيف مي‌شود [ 4 و 6 و7 ]:
2) http://nano.ir/images/newsletter/n112/2.JPG
که M در اينجا يک فلز واسطه مانند Fe، Co، Ni، Cu و. . . است. همان طور که در اين معادلات ديده مي‌شود، تفاوت اصلي بين معادلات 1 و 2 تشکيل و رسوب LizX يا آلياژي از ليتيوم است.
در يک مطالعه اصولي، Poizot و Coauthors [7[ نشان دادند که الکترودهاي ساخته شده از نانوذرات اکسيد عناصر واسطه در هنگام شارژ يا تخليه با پتانسيل 5/3 تا 01/0 ولت (نسبت بهLi+/Li )، مي‌توانند ظرفيت ويژه 700mah/g با ماندگاري ظرفيت 100 درصد براي حدود صد بار عمل شارژ/ تخليه و سرعت جريان بالاي شارژ مجدد داشته باشند. ظرفيت بالاي ذخيره ليتيوم در نانوذرات اکسيد فلزي واسطه در پتانسيل کم به وسيله سازوکار بين‌سطحي ذخيره بار تفسير مي‌شود[8 و9]. مطابق اين مدل، يون‌هاي ليتيوم بر روي بخش اکسيدي سطح مشترک ذخيره مي‌شوند؛‌ در حالي که الکترون‌ها با استقرار بر روي بخش فلزي، منجر به جدايي بار مي‌شوند. بر اين اساس، محدود کردن اندازه ذرات فلزي، فعاليت الکتروشيميايي آنها را در تشکيل و رسوب دادن Li2O افزايش مي‌دهد. با کاهش اندازه ذره، سهم تعداد کل اتم‌ها در نزديکي سطح يا روي آن افزايش مي‌‌يابد که اين امر واکنش‌پذيري الکتروشيميايي ذرات را بيشتر و مؤثرتر مي‌کند. اين بررسي‌ها علت وابستگي زياد کارايي اين مواد به درجه تجمع و به هم پيوستگي آنها را نشان مي‌دهد. به طور نمونه، kim و همکارانش[10]، اخيراً نشان دادند که ذرات SnO2 با قطر سه نانومتر نسبت به ذرات چهار تا هشت نانومتري، ظرفيت قابل توجه و پايداري چرخه بيشتري دارند؛ زيرا توزيع اين مواد در بستر Li2O مناسب‌تر است که اين امر منجر به تجمع کمتر نانوذرات Sn در خوشه‌هاي اتمي مي‌شود.
الکترودهاي نانوساختار نه تنها قادر به انجام برخي واکنش‌هاي جديد هستند؛ بلکه مي‌توانند خواص الکتروشيميايي نظير ظرفيت ويژه ذخيره انرژي، توانايي جريان شارژ/ تخليه بالا و پايداري چرخه را نسبت به نمونه‌هاي معمولي بهبود بخشند. اين امر از مسير نفوذ کوتاه‌تر و سطح تماس زياد بين مواد فعال و الکتروليت ناشي مي‌شود. نفوذ يون‌هاي ليتيوم شديداً به طول مسير انتقال و مکان‌هاي قابل دسترسي به روي سطح مواد فعال بستگي دارد. ترکيباتي که داراي ضريب نفوذ ليتيوم کمتري هستند معمولاً در حالت توده و به خصوص در سرعت‌هاي جريان بالا، ظرفيت ذخيره ليتيوم کمتري از خود نشان مي‌دهند. اين حالت مخصوص نوع TiO2 روتيل است که تنها مي‌تواند مقادير ناچيزي از يون‌هاي ليتيوم را در دماي اتاق در خود جاي دهد[11-13]. نفوذ يون‌هاي ليتيوم در TiO2 روتيل شديداً ناهمسانگرد است و نفوذ در طول کانال‌هاي محور C با سرعت بيشتري روي مي‌دهد. ضمناً انحراف قابل توجه در ساختار روتيل نفوذ يوني ليتيوم را در صفحات b-a در دماي پايين کند مي‌کند (http://nano.ir/images/newsletter/n112/3.JPG ) . اين امر مانع رسيدن يون‌هاي ليتيوم به مکان‌هاي چهاروجهي مناسب در صفحات a-b و سبب جداسازي آنها در مجاري C مي‌شود[14-16].
با اين وجود، اين جايگزيني در مقياس نانو کاملاً متفاوت است. براي ذرات TiO2 روتيل با ميانگين قطر 15 نانومتر بيشترين مقدار استقرار ليتيوم (x>1 in LixTiO2) در مطالعات اخير ما مشاهده شده‌است]17[. علاوه بر اين، به طور متوسط حدود 7/0 يون مي‌تواند به‌طور برگشت‌پذير در هر ذره TiO2 روتيل ذخيره شده، و در چرخه بعدي رها شود (شکل2) . نتايج مشابهي نيز از سوي Hu ] 18[ و Reddy ]19[ گزارش شده است.
ولي در الکترود TiO2 روتيل نانوساختار، کوتاهي مسير نفوذ، نفوذ يون‌هاي ليتيوم در صفحات a-b را محدود کرده است. بدين معني که يون‌هاي ليتيوم در يک زمان معين مي‌توانند محل‌هاي چهاروجهي بيشتري را در اين صفحات اشغال کنند. در کنار اين، مطالعه تئوري Stashans و همکارانش[20] نشان داد که در پايدارترين حالت- صفحه (0 1 1) TiO2 روتيل-استقرار ليتيوم بيشتر يک اثر سطحي است، زيرا اتم ليتيوم در توده نفوذ نمي‌کند.
سطح تماس زياد الکترود- الکتروليت همان طور که گفته شد، ذخيره سطحي ليتيوم نقش مهمي در ظرفيت‌ نهايي نانوالکترودها ايفا مي‌کند. علاوه بر اين، همان طور که در بسياري از مواد آندي ديديم، سطح تماس بيشتر الکترود- الکتروليت مي‌تواند به اصلاح ظرفيت جريان شارژ و تخليه بالا منجر شود. اين امر با توجه به دو عامل توصيف مي‌شود:
نخست آنکه اندازه کوچک ذرات، يعني طول انتقال کوتاه، نفوذ کامل ليتيوم را در زمان کمتر يا به عبارت ديگر سرعت جريان بالاتر شارژ يا تخليه را امکان‌پذير مي‌سازد. از طرف ديگر ذخيره سطحي ليتيوم فقط به مساحت سطح بستگي دارد نه به زمان نفوذ؛ بنابراين سطح تماس بيشتر الکترود- الکتروليت براي عمل در سرعت جريان بالا مفيد است.
دوم آنکه با استفاده از نانوالکترودها مي‌توان دانسيته جريان ويژه مواد فعال را به دليل سطح تماس زياد تا حد زيادي کم کرد. دانسيته جريان ويژه کمتر مي‌تواند الکترود را به طور مؤثري پايدار کرده، ظرفيت بالا را در دانسيته جريان بالا حفظ کند[3]. به عنوان مثال Poizot و همکارانش[7] نشان دادند که نانوالکترودهاي CoO مي‌تواند حدود 85 درصد از کل ظرفيت را در سرعت C2 (C سرعت جريان تئوري مورد نياز براي شارژ يا تخليه ظرفيت باتري در يک ساعت است) نگه دارد. همچنين در کنار ظرفيت ويژه بالا، عملکرد بسيار سريع براي نانوالکترودهاي TiO2 روتيل مشاهده شده است[ 18]. اين يافته‌ها براي اسپينل ليتيوم تيتانات (Li4Ti5O12) نيز صادق است. Li4Ti5O12 به دليل در حين فرايند استخراج – الحاق يک آند بسيار فعال به شمار آمده، سبب پايداري فوق‌العاده چرخه مي‌شود. ولي ماهيت نيمه‌رسانايي آن نشان مي‌دهد که عملکرد شارژ و تخليه آن در جريان‌هاي بالا نسبت به ماده توده‌اي ضعفيف‌تر است. Kavan و همکارانش]21[ نشان دادند که الکترودهاي Li4Ti5O12 نانو بلورين فعاليتي‌ عالي نسبت به جاسازي ليتيوم حتي در سرعت شارژ برابر با ( 1C=175)250C نشان مي‌دهند. اين مواد با سطح تماسي بين 20 تا صد متر مربع بر گرم مي‌توانند تقريباً تا حد کل ظرفيت ظاهري Li4Ti5O12 و در محدوده وسيعي از سرعت جريان (از 2C تا 250C) شارژ يا تخليه شوند.
در مطالعه ديگري، وابستگي ظرفيت ذخيره ليتيوم و عملکرد سريع الکترودهاي TiO2 آناتاز با اندازه ذرات بررسي]22[ و مشخص شد که با کاهش اندازه ذرات الکترود آناتاز باريک شدگي صفحات استخراج – الحاق ليتيوم در سرعت جريان‌هاي بالا به تأخير مي‌افتد. همچنين مشخص شد که سهم ذخيره سطحي ليتيوم تقريباً مستقل از سرعت جريان و تعداد چرخه‌هاست. اين امر منجر به عملکرد مناسب و پايدار چرخه شارژ- تخليه در نانوالکترودهاي TiO2 آناتاز، حتي در سرعت جريان‌هاي بالا مي‌شود (شکل 3) .
مسير انتقال کوتاه
به طور کلي فرايند شارژ- تخليه شامل يک واکنش اکسيد- احياست که در آن انتقال يون‌هاي ليتيوم و الکترون‌ها مخصوصاً در شارژ يا تخليه‌هاي سريع نقش مهمي دارند. مواد نانوساختار مي‌توانند مسير انتقال يون‌ها و الکترون‌ها را کوتاه کنند. در مقابل، الکترودهاي باتري‌هاي تجاري اغلب از مواد ميکروني مثلاً پودرهاي حاوي ذرات ميکروني با سطح ويژه کم ( ) تشکيل شده‌اند. از لحاظ نفوذ، اين مواد ميکروني به‌دليل طولاني بودن مسير انتقال يون‌هاي ليتيوم و کم بودن سطح تماس بين الکترود و الکتروليت براي فرايندهاي شارژ – تخليه سريع مناسب نيستند.
نفوذ يون‌هاي ليتيوم به دليل ماهيت فاز الکتروليت، سطح مشترک مايع- جامد، و پيچ و خم مسير نفوذ يک پديده پيچيده است و لازم است که اندازه ذرات مورد توجه قرار گيرد]13[. اگر فقط به کل فرايند توجه کنيم و فرض کنيم که ضريب نفوذ تنها به اين عوامل وابسته است، مي‌توان طول نفوذ را با استفاده از رابطه تعيين کرد که D و T به ترتيب ضريب نفوذ و زمان هستند. ظرفيت ويژه باتري (Q) به وسيله رابطه Q=IT به دست مي‌آيد که I دانسيته جريان ويژه شارژ- تخليه در واحدA/Kg ياMa/g است. در ظرفيت ثابت، افزايش I منجر به کاهش سريع (T) مي‌شود. بنابراين، ظرفيت ويژه مؤثر به نسبت حجم (r3- (r-L) 3) /r3 بستگي دارد که r شعاع ذرات فعال است]3[. براي رسيدن به حداکثر ظرفيت ويژه، طول نفوذ مورد نياز (L) بايد از (r) بزرگ‌تر باشد]23[. ذراتي با اندازه r2 بايد حدود دو نانومتر باشند. اين موضوع نشان مي‌دهد که مواد الکترودي نانوساختار براي تبديل و ذخيره دانستيه انرژي و توان بالا ضروري‌اند.
در حدود مواد فعال و متخلخل TiO2 نيز صادق است]3[. TiO2 متخلخل يک مزوساختار شش‌وجهي حاوي حفرات يکنواخت با قطر چهار تا پنج نانومتر از نانوبلورهاي TiO2 آناتاز است که در دانستيه جريان بالا (10m2/g ) ظرفيت ويژه بالايي ( 260mah/g) از خود نشان مي‌دهند]2[. نتايج مشابهي براي نانوبلورهاي TiO2 آناتاز با قطر شش نانومتر (شکل 3)، نيز مشاهده شده است]22[.
براي اصلاح عملکرد شارژ- تخليه با سرعت جريان بالا، مسير انتقال الکترون نيز بايد تا حد ممکن کوتاه باشد. از معمولاً کربن دوده به عنوان يک ماده هادي کمکي در باتري‌هاي ليتيومي استفاده مي‌شد. ولي مشکلاتي نظير سطح تماس، آلودگي سطح و. . . در فرآيند اختلاط مکانيکي مواد هادي کمکي و مواد فعال الکترود وجود داشت؛ بنابراين کاهش مقاومت از طريق کوتاه کردن مسير انتقال الکترون در فرايند شارژ- تخليه هنوز مطرح است. برخي روش‌هاي سنتز شيميايي براي سنتز مستقيم مواد فعال الکترود نظير V2O5 ] 24[، TiO2 ]25[ و MnO ]26[ بر روي کربن دوده استيلني ابداع و گزارش شده‌اند. اخيراً روشي براي سنتز مواد فعال متخلخل از قبيل No ]27[، Fe2O3 ]28[ و Co3O2 ]29[ براي تشکيل مواد نانو/ميکروساختار پوسته – هسته بر روي يک سطح مشبک نيکلي گزارش شد (شکل 4) . Tarascon و همکارانش]6[ اولين کساني بودند که نشان دادند الکترودهاي منفي شامل NiO، FeO يا CoO، داراي ظرفيت ويژه بالا تا حد 700 در سرعت جريان شارژ- تخليه پايين هستند، ولي استفاده از مواد هسته- پوسته فعال ميکرو/نانوساختار سنتزي، ظرفيت ويژه مشابهي را حتي در سرعت شارژ- تخليه خيلي بالا نشان مي‌دهند.
ظرفيت‌هاي ويژه در حدود 695mah/g (درA/g 10) و 780mah/g (در 13)، به ترتيب با استفاده از مواد فعال پوسته- هسته Ni- NiO و Ni- Fe2O3 به دست آمدند (شکل 5) .
در مواد فعال نانو/ميکروساختار پوسته- هسته، قطر سيم نيکلي خيلي نازک است. لذا سيم‌ها و نانولوله‌هاي هادي با قطر چند نانومتر تا چند ده نانومتر براي انتقال الکتروني به عنوان يک هسته مناسب‌تر هستند. مواد فعال نانوبلوري سنتز شده بر روي نانولوله‌هاي کربني نيز براي باتري‌هاي ليتيومي پرسرعت مورد بررسي قرار گرفته‌اند و رفتار شارژ- تخليه اصلاح شده‌اي را در دانسيته جريان بالا نشان داده‌اند]30[.
با وجود اين، سنتز مواد فعال نانوساختار بر روي نانولوله‌ها و نانوسيم‌هاي هادي هنوز يکي از اميدبخش‌ترين زمينه‌هاي تحقيقاتي است.
الکترودهاي نانوساختار براي عملکرد پايدار چرخه
الکترودهاي نانوساختار در کنار عملکرد بسيار مناسب در سرعت جريان‌هاي بالا، پايداري چرخه خوبي دارند[3، 17، 18، 22 و 31].
کم شدن ظرفيت باتري‌هاي ليتيومي در حين چرخه شارژ و تخليه معمولاً به دليل انقباض و انبساط حجمي زياد ناشي از فرايندهاي استخراج – الحاق ليتيوم يا آلياژ شدن ليتيوم در باتري است. به عنوان مثال، Si به عنوان الکترود منفي باتري‌هاي ليتيومي داراي بالاترين ظرفيت تئوري 4200 است ]32-34[.با وجود اين، استفاده تجاري از آن به واسطه تغييرات قابل توجه حجم در حين فرآيند محدود شده است]34[. الکترودهاي نانوساختار مي‌توانند انبساط و انقباض حجم را از بين برده، سبب پايداري چرخه عملکرد باتري شوند.
به طور نمونه، نوع جديدي از الکترودهاي نانوکامپوزيتي Si/C ظرفيت برگشت‌پذير خيلي بالا (حدود 1000) و ماندگاري ظرفيت خوبي (8/99 درصد) از خود نشان مي‌دهند]35[. گمان مي‌رود که نقش الکترود کامپوزيتي نانوساختار در کاهش تغييرات حجم Si در حين فرايندهاي شارژ و تخليه، علت ظرفيت و پايداري بالا در اين باتري‌ها باشد.
خلاصه
در اين مقاله مزاياي الکترودهاي نانوساختار براي تجهيزات ذخيره انرژي پرسرعت مخصوصاً براي باتري‌ ليتيومي پرسرعت مرور شد. البته معايبي مانند فرايند سنتز پيچيده هم براي اين نانومواد که هزينه باتري‌هاي ليتيومي را بالا مي‌برد، وجود دارد. بنابر اين، تلاش‌هاي آينده در جهت توسعه روش‌هاي سنتز ساده براي توليد انبوه مواد فعال نانوساختار است.
http://nano.ir/images/newsletter/n112/4.JPG
http://nano.ir/images/newsletter/n112/5.JPG
http://nano.ir/images/newsletter/n112/6.JPG
http://nano.ir/images/newsletter/n112/7.JPG
http://nano.ir/images/newsletter/n112/8.JPG

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد