PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : آموزشی جوشکاری



ØÑтRдŁ§
3rd March 2009, 01:44 PM
سلام دوستان...
می خوام یه ذره در مورد جوشکاری مطلب بنویسم امیدوارم مفید باشه

چون احتیاجات بشر ، اتصال و جوش در همه موارد را خواستار بوده است، لذا مثلاً از رومی‌های قدیم ، فردی به نام "پلینی" از لحیم به نام آرژانتاریم وترناریم استفاده می‌کرد که دارای مقداری مساوی قلع و سرب بود و ترنایم دارای دو قسمت سرب و یک قسمت قلع بود که هنوز هم با پرکنندگی مورد استفاده قرار می‌گیرند.

دقت و ترکیبات شیمیایی و دستگاههای متداول طلاسازی از قدیم‌الایام در جواهرات با چسباندن ذرات ریز طلا بر روی سطح آن با استفاده از مخلوط نمک و مس و صمغ آلی که با حرارت ، صمغ را کربونیزه نموده ، نمک مس را به مس احیاء می‌کنند و با درست کردن آلیاژ طلا ، ذرات ریز طلا را جوش می‌دهند و تاریخچه ای به شرح زیر دارند:




"برناندوز" روسی در 1886 ، قوس جوشکاری را مورد استفاده قرار داد.
"موسیان" در 1881 قوس کربنی را برای ذوب فلزات مورد استفاده قرار داد.
"اسلاویانوف" الکترودهای قابل مصرف را در جوشکاری بکار گرفت.
"ژول" در 1856 به فکر جوشکاری مقاومتی افتاد.
"لوشاتلیه در 1895 لوله اکسی‌استیلن__ را کشف و معرفی کرد.
"الیهو تامسون" آمریکائی از جوشکاری مقاومتی در سال 7-1876 استفاده کرد.br>

چون علم جوشکاری همراه با گنج تخصصی بود، یعنی هر جوشکار ماهر در طی تاریخ درآمد زیادی داشت، سبب شد که اسرار خود را از یکدیگر مخفی نمایند. مثلاً هنوز هم در مورد لحیم آلومینیوم و آلیاژ ، آن را از یکدیگر مخفی نگه می‌دارند. در جریان جنگهای جهانی اول و دوم جوشکاری پیشرفت زیادی کرد. احتیاجات بشر به اتصالات مدرن – سبک – محکم و مقاوم در سالهای اخیر و مخصوصاً بیست سال اخیر ، سبب توسعه سریع این فن گردید و سرمایه‌گذاری‌های عظیم چه از طرف دولتها و چه صنایع نظامی و تخصصی در این مورد اعمال گردید و مخصوصاً رقابت‌های انسانها در علوم هسته‌ای ( که فقط برای صلح باید باشد ) ، یکی دیگر از علل پیشرفت فوق سریع این فن در چند ده سال اخیر شد که به علم جوشکاری تبدیل گردید.

ØÑтRдŁ§
3rd March 2009, 01:46 PM
فرایندهای جوشکاری




'''جوشکاری''' یکی از روشهای تولید می‌باشد. هدف آن اتصال دایمی [[مواد مهندسی]] ([[فلز]]، [[سرامیک]]، [[پلیمر]]، [[کامپوزیت]]) به یکدیگر است به گونه‌ای که خواص اتصال برابر خواص ماده پایه باشد.
== پیشینه ==
موسیان در ۱۸۸۱ قوس کربنی را برای ذوب فلزات مورد استفاده قرار داد.
اسلاویانوف الکترودهای قابل مصرف را در جوشکاری به کار گرفت.
ژول در ۱۸۵۶ به فکر جوشکاری مقاومتی افتاد
لوشاتلیه در ۱۸۹۵ لوله اکسی استیلن را کشف و معرفی کرد.
الیهوتامسون آمریکائی از جوشکاری مقاومتی در سال ۷-۱۸۷۶ استفاده کرد.
در جریان جنگهای جهانی اول و دوم جوشکاری پیشرفت زیادی کرد. احتیاجات بشر به اتصالات مدرن – سبک – محکم و مقاوم در سالهای اخیر و مخصوصاً بیست سال اخیر سبب توسعه سریع این فن شده‌است.
----
== فرایندهای جوشکاری ==
=== فرایندهای جوشکاری با قوس الکتریکی ===
جریان الکتریکی از جاری شدن الکترونها در یک مسیر هادی به وجود می‌آید. هرگاه در مسیر مذکور یک شکاف هوا(گاز)ایجاد شود جریان الکترونی و در نتیجه جریان الکتریکی قطع خواهد شد. چنانچه شکاف هوا باندازه کافی باریک بوده و اختلاف پتانسیل و شدت جریان بالا، گاز میان شکاف یونیزه شده و قوس الکتریکی برقرار می‌شود. از قوس الکتریکی به عنوان منبع حرارتی در جوشکاری استفاده می‌شود.روشهای جوشکاری با قوس الکتریکی عبارت‌اند از:
*[[جوشکاری با الکترود دستی]] یا SMAWیاMMAW
*[[جوشکاری زیر پودری]]SAWیاup
*[[جوشکاری با گاز محافظ]] یا GMAW یا MIG/MAG
*[[جوشکاری با گاز محافظ و الکترود تنگستنی]] یا GTAW یا TIG
*[[جوشکاری پلاسما]]
=== فرایندهای جوشکاری مقاومتی ===
در جوشکاری مقاومتی برای ایجاد آمیزش از فشار و گرما هردو استفاده می‌شود.گرما به دلیل مقاومت الکتریکی قطعات کار و تماس آنها در فصل مشترک به وجود می‌آید. پس از رسیدن قطعه به دمای ذوب و خمیری فشار برای آمیخته دو قطعه بکار می‌رود.در این روش فلز کاملاً ذوب نمی‌شود.
گرمای لازم از طریق عبور جریان برق از قطعات بدست می‌آید.روشهای جوشکاری مقاومتی عبارت‌اند از:
*[[جوش نقطه‌ای]]
*[[درز جوشی]]
*[[جوش تکمه‌ای]]
=== فرایندهای جوشکاری حالت جامد ===
دسته‌ای از فرایندهای جوشکاری هستند که در آنها، عمل جوشکاری بدون ذوب شدن لبه‌ها انجام می‌شود. در واقع لبه‌ها تحت فشار با حرارت یا بدون حرارت در همدیگر له می‌شوند. فرایندهای این گروه عبارت‌اند از:
*[[جوشکاری اصطکاکی]]
'''''''''*[[جوشکاری نفوذی]]'''''''''
*[[جوشکاری با امواج مافوق صوت]]

ثابت شده‌است که فلزات در دمای اتاق هم قابل اتصالند . این عمل توسط ایجاد پیوندهای فلزی در دو سطح مورد اتصال ، انجام می‌گیرد . بطور ایده آل ، تشکیل اتصال فلزی بوسیلهٔ جوشکاری سرد ، و یا پیوند ( Bonding ) بطریق زیر متصور است :
دو قطعهٔ بسیار صیقلی و تمیز در اختیار است . هرکدام از ایندو، مجموعه‌ای از بارهای (+) و (-) می‌باشد به گونه‌ای که هر قطعه بدون عیب و با استحکام کافی دارای پایداری است . اگر دو قطعه کاملاً نزدیک هم قرار گرفته و به هم بچسبند ، الکترونهای فرار از هر قطعه ، بین آندو مشترک می‌شود و در نتیجه نیروی عکس العمل بین سطوح زیاد می‌گردد . بنابراین وقتی دو سطح تماس کامل داشته باشند ، نیروهای عکس العملی بین اتمها ، خودبه خود زیاد شده و یک اتصال محکم و قدرتمند بوجود می‌آید .
ولی در عمل ، یک فلز هرگز صیقل کامل نمی‌خورد و همواره اعجاج ماکروسکوپی در سطح دارد.
[ ultra Mic or Macroscopic] و همین ناهمواریها ، مساحت واقعی تماس را چند برابر مقدار واقعی می‌کند .
بدلیل وجود نقاط ناهموار میکروسکوپی ، لایه‌های سطحی فلز دارای انرژی سطحی قابل ملاحظه‌ای در اثر پیوندهای فلزی اشباع نشده ، جاهای خالی و نیز نابجائی‌ها Vacancies & Dislocations می‌باشد . بنابراین عکس العمل‌های شدیدی بین انتهای سطح فلز و محیط ایجاد می‌شوند .
دقیقاٌ بلافاصله پس از سطح فلز ، یک ابر پیوسته از الکترونهای متحرک موجود است که متناوباً از سطح جدا و به آن مجدداً می‌پیوندند (dipole ۷ Double electric ) دانسیته بار این لایه که شامل دو قطب + و – می‌باشد ، ثابت نمی‌ماند و به هندسهٔ میکروسکوپی و سطح وابسته‌است . به همین دلیل لایه‌های سطحی فلز بسیار فعالند . سطح فلز همیشه با اکسیدهای مایع و گاز پوشانیده شده و هرگاه این سطح بطور ایده آل و در فشار کمتر از mmhg ۹- ۱۰ کاملاً تمیز شود ، سطح فلز عاری از این اضافات می‌شود .
این سطح تمیز ، مدت زیادی نمی‌تواند دوام داشته باشد . تشکیل اتصال قوی مابین فلزات ، در متد پیوند سرد ، با تغییر شکل دو جانبه و طی سه مرحله انجام می‌پذیرد .
در طی مرحلهٔ اول؛ سطوح مورد اتصال بایستی بطور کامل به هم نزدیک شوند .
در مرحلهٔ دوم ؛ metallic contact یا اتصال بین فلزی شکل می‌گیرد .
در مرحلهٔ سوم ؛ یک اتصال جوش قوی تولید می‌گردد . اکنون این مراحل به تفصیل مورد بحث قرار می‌گیرد :
زمانیکه دو سطح کنار هم قرار داده می‌شوند ، ناهمواری‌های میکروسکوپی و نقاط موجی شکل تشکیل می‌یابند . ابتدا این دو قطعه یکدیگر را در نقاط منفرد بالاتر از سطح ، لمس می‌کنند . برای تماس بیشتر به مساحت زیادتری نیاز است . این عمل بوسیلهٔ وارد آوردن نیرو انجام می‌شود .
به دلیل وجود لایه‌های سخت و نازک اکسیدی ( Fragile ) میزان نیرو بسیار بالا خواهد بود .
البته اگر نیرو کافی نباشد اتصالی بدست می‌آید که پلاستیستهٔ آن کم و استحکام ضربه‌ای آن ناکافیست . لایه‌های نازک روغنی یا ارگانیک آلی ، اثر به مراتب زیان آورتری دارند و اگر مقدارشان زیاد شود بطور کامل از ایجاد پیوند جلوگیری می‌کند و حتماً بوسیلهٔ حلال‌های قوی بایستی آنها را زدود .
مرحلهٔ دوم هنگامی رخ می‌دهد که مساحت اتصال فلزی بین دو قطعه زیاد می‌شود و بلورهای مشترکی بین دو سطح تولید می‌گردد.
زمانیکه تماس فلزی کاملاً شروع به شکل گیری می‌کند ، بلورها و شبکه‌های کریستالی ، توسط لایه‌های نازک از یک ترکیب پیچیده جدا می‌شوند .
در حین این تغییر ، سطح فشرده شده در تماس با اتمسفر نیستند و هیچ گونه لایهٔ نازک دیگری نمی‌تواند شکل بگیرد . بنابراین فیلم‌های شکننده از میان رفته و لایه‌های مایع و گاز بخشی به بیرون رفته و بخشی جذب فلز شده به آن نفوذ می‌کنند .
در مرحلهٔ سوم ، پروسه شامل حرکتهای مختلف ذرات ناشی از نفوذ است و به زمان کافی جهت تکمیل این مرحله ،احتیاج است .
=== فرایندهای اکسی فیول ===
گروه فرایندهای جوشکاری است که در آن، اتصال با ذوب شدن توسط یک یا چند شعله گاز، با اعمال فشار یا بدون آن، با کاربرد فلز پر کننده یا بدون آن انجام می‌شود.
=== فرایند جوشکاری با لیزر ===
در این روش از پرتوی لیزر برای جوشکاری استفاده می‌شود.در جوشکاری لیزری دانسیته انرژی فراهم شده بسیار بیشتر از جوشکاری با قوس آرگون یا با مشعلهای اکسی اسیتیلن است.
از لیزرهای مختلفی می‌توان برای جوشکاری استفاده کرد مانند لیزر گاز کربنیکی یا لیزر یاقوت ولی باید دقت کرد که انرژی پرتو آنقدر زیاد نباشد که باعث تبخیر فلز شود.
به طور عمده از دو نوع لیزر در جوشکاری و برشکاری استفاده می‌شود،لیزرهای جامد مثل Ruby و ND:YAG و لیزرهای گاز مثل لیزر CO۲ .
لیزر Ruby از یک کریستال استوانه‌ای شکل Ruby (یک نوع اکسید آلومینیوم است که ذرات کرم در آن پخش شده‌اند) تشکیل شده‌است . دو سر آن کاملا صیقلی و آینه‌ای شده و در یک سر آن یک سوراخ ریز برای خروج اشعه لیزر وجود دارد . در اطراف این کریستال لامپ گزنون قرار دارد که لامپ فوق برای کار در سرعت حدود ۱۰۰۰ فلاش در ثانیه طراحی شده‌است . لامپ گزنون با استفاده از یک خازن که حدود ۱۰۰۰ بار در ثانیه شارژ و تخلیه شده فلاش می‌زند و هنگامی که کریستال Ruby تحت تاثیر این فلاش‌ها قرار بگیرد اتمهای کرم داخل شبکه کریستالی تحریک شده و در اثر این تحریک امواج نور از خود سطع می‌کنند و با باز تابش این اشعه‌ها در سطوح صیقلی و تقویت آنها اشعه لیزر شکل می‌گیرد . اشعه لیزر شکل گرفته از سوراخ ریز خارج شده و سپس به وسیله یک عدسی بر روی قطعه کار متمرکز شده که بر اثر برخورد انرژی بسیار زیادی در سطح کوچکی آزاد می‌کند که باعث ذوب و بخار شدن قطعه و انجام عمل ذوب می‌شود .
محدودیت لیزر Ruby پیوسته نبودن اشعه آن است در حالیکه انرژی خروجی ان بیشتر از لیزر‌های گاز مانند لیزر CO۲ است که در آنها اشعه حاصله پیوسته‌است، از لیزر CO۲ بیشتر به منظور برش استفاده می‌شود و از لیزر ND:YAG بیشتر برای جوشکاری آلومینیوم استفاده میشود .
از انجا که در این روش مقدار اعظمی از انرژی مصرف شده به گرما تبدیل می‌شود این سیستم باید به یک سیستم خنک کننده مجهز باشد .
در جوشکاری لیزر دو روش عمده برای جوشکاری وجود دارد،یکی حرکت دادن سریع قطعه زیر اشعه‌است تا که یک جوش پیوسته شکل بگیرد و دیگری که مرسوم تر است جوش دادن باچند سری پرتاب اشعه‌است .
در جوشکاری لیزر تمامی عملیات ذوب و انجماد در چند میکروثانیه انجام می‌گیرد و به خاطر کوتاه بودن این زمان هیچ واکنشی بین فلز مذاب و اتمسفر انجام نخواهد شد و از این رو گاز محافظ لازم ندارد .
بهترین طرح اتصال برای این نوع جوشکاری طرح اتصال لب به لب می‌باشد و با توجه به محدودیت ضخامت در آن می‌توان ازطرح اتصال‌های T یا اتصال گوشه نیز استفاده نمود.
مزایای جوشکاری لیزر :
* حوضچه مذاب می‌تواند داخل یک محیط شفاف ایجاد شود ( باعکس روشهای معمولی که همیشه حوضچه مذاب در سطح خارجی آنها ایجاد می‌شود ) .
* محدوده بسیار وسیعی از مواد را مانند آلیاژها با نقاط ذوب فوق العاده بالا ، مواد غیر همجنس و … را میتوان به یکدیگر جوش داد .
* در این روش میتوان مکان‌های غیر قابل دسترسی را جوشکاری نمود .
* از آنجا که هیچ الکترودی برای این منظور استفاده نمی‌شود نیازی به جریانهای بالا برای جوشکاری نیست .
* اشعه لیزر نیاز به هیچگونه گاز محافظ یا محیط خلایی برای عملکرد ندارد .
* به خاطر تمرکز بالای اشعه منطقه HAZ بسیار باریکی در جوش تشکیل میشود .
* جوشکاری لیزر نسبت به سایر روشهای جوشکاری تمیز تر است .
محدودیت‌ها و معایب جوشکاری لیزر :
سیستم‌های جوشکاری لیزرنسبت به سایر دستگاههای سنتی جوشکاری بسیار گران هستند و در ضمن لیزرهایی مانند Ruby به خاطر پالسی بودن اکثر آنها از سرعت پیشروی کمی برخوردارند ( ۲۵ تا ۲۵۰ میلیمتر در دقیقه ) . همچنین این نوع جوشکاری دررای محدودیت عمق نیز می‌باشد .
از اشعه لیزر هم به منظور برش و هم به منظور جوشکاری استفاده می‌شود . این نوع جوشکاری در اتصال قطعات بسیار کوچک الکترونیکی و در سایر میکرو اتصال‌ها کاربرد دارد . از اشعه لیزر میتوان در جوش دادن آلیاژها و سوپر الیاژها با نقطه ذوب بالا و برای جوش دادن فلزات غیر همجنس استفاده نمود . به طور کلی این روش جوشکاری برای استفاده‌های دقیق و حساس استفاده میشود . از این روش میتوان در صنعت اتومبیل و مونتاژآن برای جوش دادن درزهای بلند استفاده نمود.'''''


=== فرایند جوشکاری با باریکه الکترونی ===
کاربرد جریانی از الکترونها است که با ولتاژ زیاد شتاب داده شده‌اند و به صورت باریکه‌ای متمرکز به عنوان منبع حرارتی جوشکاری به کار می‌روند. به دلیل دانسیته بالای انرژی در این پرتو [[منطقه تف دیده]] بسیار باریک می‌باشد. و جوشی با کیفیت مناسب به دست می‌آید. این فرآیند به عنوان اولین فرایند جوشکاری بکار رفته برای ساخت بدنه جنگنده هااستفاده شد. بال جنگنده افسانه‌ای F-۱۴ یا Tomcat با استفاده از این فرایند ساخته شده‌است.
== کنترل کیفیت و بازرسی ==
طبق طبقه بندی استانداردهای مدیریت کیفیت (ISO ۹۰۰۰)جوشکاری جزو [[فرایندهای ویژه]] طبقه بندی شده‌است. که این نشان دهنده این است که برای کنترل کیفیت و [[تضمین کیفیت]] این فرایند ویژه می‌باید پیش بینی‌های خاصی انجام داد.


== ایمنی و بهداشت کار در جوشکاری ==
ایمنی در جوش کاری با قوس الکتریکی
در مرحله اول استفاده از عینک محافظ تحت هیچ شرایطی نباید فراموش شود.در صورت انجام عملیات جوش کاری در محیط بسته بخارات حاصل باید به خوبی تهویه شود.در محیط باز هم باید احتیاط لازم در مورد این بخارات به عمل اید.جهت جلوگیری از اسیب چشم دیگران بهتر است در صورت امکان محل انجام جوشکاری بارتیشن بندی شود.
کابل ها نباید در مسیر رفت و آمد یا در معرض ضربه باشد.
== مراکز و موسسه‌های جوشکاری ==
*انجمن جوشکاری آمریکا، AWS
*انستیتو بین المللی جوشکاری، IIW
* انیستیتو جوشکاری ادیسون، EWI
*مرکز جهانی اتصال مواد، TWI
* انیستیتو جوشکاری هُبارت،


== منابع ==
* ALTHOUSE, ANDEREW DANEL MODERN WELDING, ۱۹۷۶
* METAL HANDBOOK ۸th EDITION VOL.۶ WELDING&BRAZING ۱۹۸۷
* فرهنگ جوشکاری نوشته: پرویز فرهنگ، امیر حسین کوکبی

ØÑтRдŁ§
3rd March 2009, 01:49 PM
http://www.njavan.ir/forum/c:%5CDocuments%20and%20Settings%5Cradismmmm3%5CMy% 20Documents%5CMy%20Pictures%5Cpvst.gifبه تناسب کاربرد دستی واتوماتیک، پلاسماپیشنهادات سودمند زیادی در،تولید درمقیاس کوچک ودقت جوش، حجم زیاد فلز و درمجموع تجهیزات دارد. از سال 1964 که مقدمه ای برای صنعت جوشکاری بود، جوشکاری پلاسما براساس مزایای اصلی، کنترل ودقت باتولید جوشهایی با کیفیت بالا با استفاده از الکترودهای بادوام در کارهایی با حجم زیاد توسعه یافت.






اکنون از پلاسما برای جوشکاری هر چیزی استفاده می شود : ازوسایل جراحی وآشپزخانه ازطریق صنایع غذایی گرفته تا تعمیر پره های موتور جت. درواقع پلاسما گازی است که در دمای خیلی زیاد، گرم و یونیزه شده بطوریکه هادی جریان الکتریکی می شود . فرایند جوشکاری قوسی پلاسما شبیه GTAW (جوشکاری باالکترود تنگستنی به همراه گازمحافظ ) است که ازپلاسما برای انتقال جریان الکتریکی لازم برای ایجاد قوس به قطعه کار استفاده می شود . قطعه کار براثر گرمای شدید قوس ،گداخته و ذوب می شود. انواع فلزاتی که می توانند توسط پلاسما جوش داده شوند عبارتند از : فولاد ضدزنگ فلزات دیرگداز ودیگرفولاها: تیتانیم، تانتالیم ،مس، برنج ،طلا، نقره، الیاژی از آهن ونیکل وکبالت (kovar )و Inconel, وzircalloy







قوس جوشکاری )TIG / GTAW چپ ( و پلاسما ( راست )




در مشعل جوشکاری پلاسما الکترود تنگستنی دریک نازل مسی که در نوک آن دریچه ی کوچکی وجود دارد قرار می گیرد . شعله قوس ابتدا میان مشعل الکترود و نوک نازل بوجود می آید وسپس قوس ایجاد شده به قطعه کار منتقل می شود. گاز پلاسما و قوس دریک مسیر با یک منفذ محدود شده باهم برخورد می کنند و مشعل یک گرمای فشرده ومتمرکز با دمای بالا به قسمت کوچکی اعمال می کند . با این فرایند تجهیزات جوش پلاسما کارایی بالایی دارد که قادر است جوشهایی باکیفیت خیلی خوبی تولید کند . در جوشکاری موادی که درزمانی که گرم می شوند تمایل به خروج گاز دارند، الکترودهایی که محافظت می شوند کمتر در معرض آلودگی و فساد قرار می گیرند . این امر باعث طولانی تر شدن عمر الکترود و افزایش زمان نگهداری الکترود می گردد. (معمولاً 1/8 ساعت ) گاز پلاسما معمولا از گاز آرگون است و مشعل نیز از گاز دومی ( آرگون، آرگون/ هیدروژن ویا هلیم ) برای کمک در محافظت حوضچه جوش استفاده می کند تا اکسیداسیون را کاهش دهد . سوراخ نازل با در نظر گرفتن اندازه مهره جوش انتخاب می شود تا قطر و ضخامت قوس بر اساس آن کنترل شود . تجهیزات اضافی لازم برای جوشکاری پلاسما شامل : 1- منبع قدرت 2 – consol پلاسما ( درونی یا بیرونی) 3- دستگاه گردش آب ( درونی یا بیرونی) -4 مجموعه مشعل فرعی جوش پلاسما ( نوک ها، سرامیک ها، گیره ودستگاه اندازه گیری نصب الکترود ) شروع و انتقال قوس پلاسما آرام و پیوسته ویکنواخت است که این امر در جوش صفحات نازک وسیم های باریک و اجزای کوچک مناسب است . شکل وطول قوس وتوزیع حرارت پلاسما، فاصله بحرانی گریز جوش را نسبت به حالت GTAW کمتر می کند . تقریباً در تمام کاربردها به کنترل اتوماتیک ولتاژ ( AVC ) نیازی نیست . پایداری بالای قوس در طی جوشکاری از وزش و انحراف قوس می کاهد واپراتور را قادر می سازد از وسایل شروع کننده قوس در نزدیکی ومجاورت محل اتصال جوش برای نفوذ بهتر حرارت استفاده نماید . چگالی انرژی قوس در پلاسما در حدود 3 برابر انرژی قوس GTAW است که از شکستگی و تغییر شکل جوش واز H .A .Z) ) می کاهد که این امر باعث ریزدانه شدن جوش وافزایش سرعت جوشکاری می شود. (این جوش در کمتراز 0.005 ثانیه کامل می شود) جریان اولیه کمتر از 1 آمپر می تواند دقت جوشکاری اجزای کوچک وکنترل بهتر جوش را در جوشکاری لبه ای شیب دار را در بر داشته باشد . در هنگام شروع قوس منبع قدرت پلاسما، کمترین صدا را تولید می کند و پلاسما می تواند از تجهیزات کنترل عددی (NC ) بدون دخالت الکتریکی استفاده کند .این امر همچنین در درز گیری با جوش اجزای الکترونیکی بر خلاف فرایند GTAW که با دخالت الکتریکی ممکن است آسیب هایی به اجزای حساس الکترونیکی درونی وارد کند، استفاده می شود . منبع پلاسما دامنه وسیعی از فرکانس برای کاربردهای پالسی در اختیار ما قرار می دهد که گاهی اوقات این فرکانسها به بالاتر از 10 Khz می رسد. جوشکاری پلاسما کاربردهای فراوان و گوناگونی دارد. بطور کلی برش و تعمیر قالب ها در صنعت با استفاده از پلاسما در حال رشد است . منبع قدرت میکروقوس این توانایی را دارد که قوسی با جریان پایین ایجاد کند و راهی موثر برای تعمیر و شکافهای کم و جزیی و گودی های ناشی از استفاده نادرست و فرسودگی و تعمیر اصولی و عملیات حرارتی داشته باشد. برای جوش لبه های بیرونی فرایند پلاسما به استفاده از طول قوسی بلندتر و پایدار که به مهارت زیادی در کنترل حوضچه ندارد نیاز توصیه می کند. در مواجه با گوشه های درونی شکاف ها، الکترود تنگستنی GTAW/TIG می تواند انجام فرایند جوش را بهتر کند. در جوشکاری تسمه ها توسط پلاسما انتقال قوس به قطعه کار با کار کردن بر روی لبه های اتصال بطور پیوسته صورت می گیرد . در کاربرد های اتوماتیک در جوشهای طویل و بلند نیازی به کنترل فاصله نیست و این فرآیند نیازکمتری به تعمیر اجزای مشعل دارد . تیوب و لوله از نورد تیوب و بوسیله رولهای فرم دهنده مواد و جوشکاری لبه ای در محل جوش تولید می شوند . کارایی و بازده نورد تیوب به سرعت جوشکاری و مجموع زمان های صرف شده در جوشکاری بستگی دارد. جوشکاری پلاسما ویژگی های مهم و سودمندی دارد برای مثال : افزایش سرعت جوشکاری تیوب ، جوشهایی با کیفیت مناسب بخاطر پایداری و ثبات قوس و افزایش عمر نوک الکترود را می توان نام برد.




لیست تجهیزات مورد نیاز :




1- منبع قدرت 2- plasma consol (گاهی بصورت درونی یا بیرونی) -3 دستگاه گردش آب (بصورت درونی یا بیرونی ) -4مشعل جوشکاری پلاسما -5مجموعه لوازم فرعی مشعل ( نوک ها، سرامیک ها، گیره، دستگاه اندازه نصب الکترود)




ویژگی ها ، مزایا ، کاربردها : ویژگی ها:




-1 حفاظت الکترود که زمان استفاده از آن را طولانی تر می کند. -2 قابلیت جوشکاری با آمپراژ پایین ( پایین تر از (0.05 A -3 پایداری و یکنواختی قوس وشروع آرام آن جوشهای مستحکمی تولید می کند. -4 پایداری قوس در هنگام شروع و آمپراژ پایین جوشکاری -5 حداقل صدای منتشره ، صدای زیاد فقط در هنگام شعله اولیه قوس ونه در تمام جوشها -6 امکان بالا بردن سرعت جوشکاری و اینکه چگالی انرژی قوس به 3 برابر چگالی انرژی فرایند GTAW می رسد. -7 زمان جوشکاری به کمتر از 0.005 ثانیه می رسد . -8 چگالی انرژی از H .A .Z می کاهد و کیفیت جوش را افزایش می دهد. -9 طول قوس ، شکل و حتی توزیع حرارت آن از ویژگی های مهم آن است. -10 قطر وضخامت قوس از طریق سوراخ نازل انتخاب می شود .




مزایا : دلایل زیادی برای استفاده از جوشکاری پلاسما وجود دارد . اما می توان تمام آن را در سه قسمت اصلی خلاصه کرد : -1 دقت : معمولاً دقت جوش پلاسما نسبت به جوشهای معمولی TIG بیشتر است . ( بخاطر داشته باشید که افزایش منبع قدرت می تواند قوسی متفاوت با قوس TIG بوجود آورد). پلاسما مزایای زیر را نسبت به جوشهای TIG متداول ارائه میدهد : ← پایداری وتمرکز قوس ← دامنه وسیع تغییر طول قوس ( TIG ± 5% ، plasma ± 15% ) -2 جوشکاری قطعات کوچک : ← قابلیت استفاده از آمپراژ پایین ( در بسیاری از منابع قدرت شدت جریان تا 0.1 A پایین آورده می شود . ← پایداری قوس در شدت جریان های پایین ← انتقال آرام وآهسته ( شروع قوس ) بدون ایجاد صدای زیاد ← امکان کاهش زمان جوشکاری (برای خال جوشها ، تیوب ها ،guid wire وغیره .) -3 تولید بالای جوشکاری : ←در این فرایند از الکترود های با دوام می توان مدت زمان بیشتری نسبت به TIG وقبل از اینکه فاسد شوند از آنها استفاده کرد . درکل فرایند جوشکاری تمام مزایای منحصر بفرد پلاسما قابل مشاهده است .




کاربرد ها : -1 جوشکاری قطعات کوچک : در فرایند پلاسما ، قوس می تواند آهسته و آرام و در عین حال ثابت وپیوسته در نوک سیم ها یا دیگر اجزای کوچک شروع شود و دوره زمانی دوباره کاری جوش را بسیار کوتاه کند . این خصوصیت در زمان جوشکاری اجزایی مانند : سوزنها ، سیم ها ، فیلامان های لامپها ، ترموکوپلها ، میله و ستون ها وحتی ابزارهای جراحی سودمند است . -2 اتصال محکم قطعات : ابزارهای طبی و الکترونیکی اغلب بطور محکمی از طریق جوشکاری متصل می شوند . فرایند پلاسما این توانایی را دارد که : ←Heat in put را کاهش می دهد . ← قطعات حساس وظریف ونزدیک بهم را جوش دهد . ←قوس را بدون ایجاد صدای الکتریکی ایجاد کند ( صدای زیاد میتواند باعث آسیب های درونی الکتریکی شود) پلاسما در سنسورهای فشاری و الکتریکی ، اجزای الکترونیکی ، موتورها، باتریها، تیوب های کوچک در اتصالات / لبه دار کردن ، سوپاپها ،تجهیزات لبنیاتی ، میکروسوئیچ ها و غیره کاربرد دارد . -3 ابزار برش و تعمیر قالب ها : در حالی که صنعت تعمیر در تلاش است که به شرکتهایی که می خواهند از اجزایی که دارای شکافها ی باریک و فرورفتگی های ناشی ازاستفاده نادرست و فرسودگی ، دوباره استفاده کند کمک نماید ، منبع قدرت میکروقوس جدید این توانایی را دارد که قوسی آرام با جریان پایین ایجاد کند وراهی موثر برای تعمیرات اصولی وعملیات حرارتی داشته باشد . از فرایند میکروTIG و هم از میکرو پلاسما بعنوان ابزارهای برشی و تعمیر قالب ها استفاده می شود . برای لبه های بیرونی، قوس در فرایند پلاسما پایداری بیشتری دارد و مستلزم داشتن مهارت زیادی در کنترل حوضچه مذاب نیست . در هنگام مواجه شدن با گوشه های درونی و شکافها ، الکترود تنگستنی فرایند GTAW / TIG می تواند دسترسی به آنها را راحت تر کند . -4جوشکاری تسمه های فلزی : فرایند پلاسما این امکان را فراهم می کند که انتقال قوس بین قطعه کار و با کار کردن در لبه های اتصال جوش ثابت و پایدار باشد. در کاربرد های اتوماتیک ، کنترل طول قوس در جوشهای بلند ضروری نیست و نیاز کمتری به تعمیر و نگهداری اجزای مشعل دارد. این فرایند مخصوصاً در کارهایی با حجم بالا و در جایی که مواد گازهایی به هوا منتشر می کنند ودارای سطوح آلوده هستند مناسب است . -5جوشکاری نورد تیوب : تیوبها و لوله ها از نورد تیوب وبا گرفتن تسمه های پیوسته و نزدیک کردن لبه های آن تا در محل جوش به هم برخورد کنند تولید می شوند . در این نقطه فرایند جوشکاری ذوبی و گداختن لبه های تیوب انجام می شود . بازده و کارایی نورد تیوب به سرعت و مجموع زمانهای صرف شده در جوشکاری بستگی دارد . در زمان ساخت نوردها همیشه میزان خاصی از آهن قراضه تولید می شود . بنابراین از مهمترین موضوعات برای کاربران نورد تیوب اینها هستند : ←حداکثر سرعت قابل حصول در جوشکاری نورد تیوب ←کیفیت واستحکام مناسب جوش بخاطر پایداری قوس ←حداکثر زمان عمر نوک الکترود جوشکاری تعدادی از نوردهای تیوب در جوشکاری پلاسما به منظور بدست آوردن توأماً افزایش سرعت جوشکاری و بهتر کردن نفوذ جوش و افزایش عمر الکترود بکار گرفته می شوند .




مقایسه انرژی وارده در جوش پلاسما و GTAW :




اطلاعات زیر از آزمایشات انجام شده با GTAW / TIG و جوشکاری پلاسما بر روی یک قطعه مشخص و ثابت به منظور مقایسه انرژی وارد در هر دو فرایند بدست آمده است . نتایج آزمایش باید بعنوان یک راهنمای کلی برای مقایسه استفاده شوند وفقط مهندسان جوشکاری می توانند پارامترهای زیر را تغییر دهند ونتایج مختلفی بدست آورند. پارامترهای آزمایش : جوشکاری دستی ، بدون وسایل قیدوبست ، آلیاژ Ni / Cr به ضخامت 0.102" همه اعداد با استفاده از ابزارهای اندازه گیری تعیین شده اند.




GTAW: 125 Amp , 12 V , 10.24 I.P.M 26 cm/min



Plasma : 75 Amp , 18 V , 13.38 I.P.M 34 cm/min





علاوه بر اینها بالا بودن سرعت جوشکاری Heat in Put را کاهش می دهد و باعث : -1 افزایش استحکام -2 کاهش شکنندگی جوش -3 کاهش تنش به اجزای جوش -4 کاهش خطر صدمه دیدن قسمتهای نزدیک اتصال توسط گرما




جوشکاری پلاسما چیست ؟ جوشکاری قوسی پلاسما ) PAW ) نوع پیشرفته ای از فرایند جوشکاری با الکترود تنگستنی با گاز محافظ TIG) ) است . جوشکاری TIG یک قوسی با سوختن آزاد که ناپایدار است و منجر به انحراف در جریانهای پایین می گردد. با افزایش جریان ، قدرت و قطر قوس نیز افزایش می یابد. این امر منجر به کاهش تمرکز قدرت در قطعه کار می گردد که باعث بزرگتر شدن درز و افزایش H.A.Z می شود . برخلاف مشعل های جوش TIG در فرایند PAW از نازل های باریک ودو گاز مجزا استفاده می شود که این امر باعث می شود شکل قوس بصورت یک ستون باریک در می آید و تمرکزبالای قوس را را ناشی می شود. ستون پلاسما اکنون در طول الکترود پایدار شده است و نسبت به قوس TIG متراکم تر است . دمای باریکه قوس پلاسما بین 10000-24000 K است درحالیکه دمای قوس TIG بین 8000-18000 K است.




توانایی عملی ماشینهای جوش پلاسما با تراکم قوسی 400 PW و 200 PW :






وضعیت قوس در جوشکاری پلاسما -1جوشکاری دستی پلاسما معمولاً با جوشکاری که بدون نوع ذوبی جوش key hole باشد سازگار شده است -2 تقاضاهایی مثل ساخت جوشهایی از نوع key hole و یا پاسهای پر کننده نیازمند جوشکاری پلاسمای مکانیزه می باشد . -3 پودرهای surfacing (PTA ) برای پوشاندن سطح کار و مقاومت در برابر خورندگی استفاده می شود . در کارهای وسیع و متنوع از کبالت ، نیکل،کاربید تنگستن، آلیاژهای سخت و آلیاژهای آهن بصورت پودر استفاده می شود .




آماده سازی محل اتصال برای فرایندهای مختلف جوشکاری:






سرعت جوشکاری :(cm/min) نمونه ای ازفولاد کربنی (5 mm ) سنگ زنی +سرباره زدایی 2+پاس با سرعت (15-20 cm/min ) +آماده سازی




مقدار تقریبی Heat in put در فرایند های مختلف جوشکاری : بیشترین ضخامت صفحاتی را که بااستفاده از فرایندپلاسما در یک پاس و بدون آماده سازی می توان جوشداد :فولاد کربنی و ضد زنگ وآستنیتی بیشتر از 8mm تیتانیم بیشتر از 10mm هزینه جوشکاری با TIG / Plasma




جوشکاری پلاسما (پایین دستی یا عمودی – افقی )در ضخامت هایی بین 2.5 – 10 mm در جهت بهبود جوش مزایای زیر را دارد : ←کاهش زمان آماده سازی (جوشکاری بدون آماده سازی ، لب به لب گونیایی بدون شکاف ) ←کاهش زمان جوشکاری ( تک پاس ) ←کاهش پرداخت کاری و زمان تمییز کردن ←حذف مرحله دوباره کاری بخاطر نداشتن عیب کاربرد در صنایع : در صنایع هوایی و هوا فضا ، در صنایع غذایی و شیمیایی ، در ساختمان ماشین ها ، اتومبیل ، راه آهن در ساختن کشتی ها، تانک و تجهیزات ساختمانی و خطوط لوله و...

ØÑтRдŁ§
3rd March 2009, 01:52 PM
جوشكاري زير آب






بيش از يك صد سال است كه قوس الكتريكي در جهان شناخته شده و بكار گرفته مي شود. اما اولين جوشكاري زير آب توسط نيروي دريايي بريتانيا انجام شد- در آن زمان يك كارخانه كشتي سازي براي آب بند كردن نشت هاي موجود در پرچ هاي زير كشتي كه در آب واقع شده بود از جوشكاري زير آبي بهره گرفت. در كارهاي توليدي كه در زير آب انجام مي پذيرد، جوشكاري زير آبي يك ابزار مهم و كليدي به شمار مي آيد. در سال 1946 الكترود هاي ضد آب ويژه اي توسط وان در ويليجن1 در هلند توسعه يافت. سازه هاي فرا ساحلي از قبيل دكل هاي حفاري چاه هاي نفت، خطوط لوله و سكوهاي ويژه اي كه در آب ها احداث مي شوند، در سالهاي اخير به طرز چشمگيري در حال افزايش اند. بعضي از اين سازه ها نواقصي را در عناصر تشكيل دهنده اش و يا حوادث غير مترقبه از قبيل طوفان تجربه خواهند كرد. در اين ميان هرگونه روش بازسازي و مرمت در اين گونه سازه ها مستلزم استفاده از جوشكاري زير آبي است.





× طبقه بندي


جوشكاري زير آبي را مي توان در دو دسته طبقه بندي كرد:


1. جوشكاري مرطوب


2. جوشكاري خشك




در روش جوشكاري مرطوب، عمليات جوشكاري در زير آب اجرا شده و مستقيماً با محيط مرطوب سرو كار دارد. در روش جوشكاري خشك، يك اتاقك خشك در نزديكي محلي كه مي بايستي جوشكاري شود ايجاد شده و جوشكار كار خود را با قرار گرفتن در داخل اتاقك انجام مي دهد.



× جوشكاري مرطوب:

نام جوشكاري مرطوب حاكي از آن است كه جوشكاري كه در زير آب صورت مي پذيرد، مستقيماً در معرض محيط مرطوب قرار دارد. در اين روش از جوشكاري از نوعي الكترود ويژه استفاده مي شود و جوشكاري به صورت دستي درست مانند همان جوشكاري كه در فضاي بيرون آب انجام مي شود، صورت مي گيرد. آزادي عملي كه جوشكار در حين جوش كاري از اين روش دارد، جوشكاري مرطوب را موثر تر و به روشي كارا و از نقطه نظر اقتصادي مقرون به صرفه كرده است. تامين كننده نيرويجوشكاري روي سطح مستقر شده است و توسط كابل ها و شيلنگ ها به غواص يا جوشكار متصل مي شود.

در جوشكاري مرطوب MMA (جوشكاري قوس فلزي دستي)2 دو مشخصه زير بكار گرفته مي شود:



تامين كننده نيرو: dc

قطبيت: قطبيت منفی

اگر از جريان DC و قطب + استفاده شود، برقكافت روي داده و سبب خرابشدگي و از بين رفتن سريع اجزاء فلزي نگهدارنده الكترود مي شود. براي جوشكاري مرطوب از جريان AC نيز به دليل عدم امنيت كافي و وجود مشكلاتي كه در حفاظت از قوس در زير آب وجود دارد، استفاده نمي شود.






منبع تغذيه مي بايستي يك دستگاه جريان مستقيم كه داراي رده بندي آمپر بين 300 تا 400 است، باشد. دستگاههاي جوشكاري ژنراتور موتور اغلب براي جوشكاري مرطوب مورد استفاده قرار مي گيرد. پيكره دستگاه جوشكاري مي بايستي در پايين، زير كشتي قرار داده شده باشد. مدار جوشكاري مي بايستي شامل نوعي سوئيچ مثبت باشد كه معمولاً از يك كليد تيغه اي استفاده مي شود و از جوشكار غواص فرمان مي گيرد. كليد تيغه اي در مدار الكترود مي بايستي در تمام طول جوشكاري در برابر شكسته شدن مقاوم باشد و نيز از امنيت كافي برخوردار باشد. منبع تغذيه جوشكاري مي بايستي در حين فرايند جوشكاري تنها به نگهدارنده الكترود وصل باشد. در اين روش از جريان مستقيم همراه با الكترود منفي و نيز از نگهدارنده الكترود ويژه اي كه در برابر آب عايق هستند استفاده مي شود. نگهدارنده هاي الكترود جوشكاري كه در زير آب بكار گرفته مي شوند از يك سر خميده براي گرفتن الكترود و نگه داشتن آن در خود بهره مي برند و ظرفيت پذيزش دو نوع الكترود را دارد.



نوع الكترودي كه به كار گرفته مي شود بر طبق استاندارد AWS (انجمن جوشكاري امريكا)3 در طبقه بندي E6013 قرار گرفته است. اين الكترود ها مي بايستي ضد آب باشند و تمامي اتصالات نيز بايد طوري عايق بندي شده باشد كه آب نتواند با قسمت هاي فلزي كوچكترين تماسي داشته باشد.اگر عايق بندي شكستگي داشته باشد و يا قسمتي از آن ترك داشته باشد، آنگاه آب مي تواند با فلز رسانا تماس پيدا كرده ، موجب ايجاد نقص و در نهايت كار نكردن قوس شود. به علاوه اينكه ممكن است خوردگي سريع مس در قسمتي كه عايق ترك خورده است، ايجاد شود.



× جوشكاري بيش فشار4(جوشكاري خشك)

جوشكاري بيش فشار در اتاقك هاي پلمپ شده در اطراف سازه يا قطعه اي كه مي خواهد جوشكاري شود، استفاده مي شود. اين اتاقك در يك فشار معمولي پر از گاز مي شود (كه معمولاً از هليوم حاوي نيم بار5 اكسيژن است). اين جايگاه روي خطوط لوله قرار گرفته و با هوايي مخلوط از هليو و اكسيژن كه قابل تنفس باشد پر شده و در فشاري كه جوشكاري آنجا صورت مي پذيرد و يا فشاري بيشتر از آن اجرا مي شود. در اين روش در اتصالات جوش بسيار با كيفيتي ايجاد مي شود به طوري كه با اشعه ايكس و ديگر تجهيزات لازم ايجاد مي شود. فرايند جوشكاري قوس گاز تنگستن در اين قسمت بكار گرفته خواهد شد. محوطه زير جايگاه در معرض آب قرار دارد. بنابراين جوشكاري در محل خشكي صورت گرفته ولي در فشار هيدرو استاتيكي آب دريا كه در محيط مجاور آن قرار دارد.



× خطرات بغرنج

براي غواص يا جوشكار خطر شك الكتريك وجود خواهد داشت. اقدامات احتياطي كه انجام شده اند عبارتند از عيق بندي مناسب و در حد كافي تجهيزات جوشكاري، بسته شدن منبع الكتريسيته درست زماني كه قوس به پايان مي رسد و نيز محدود كردن ولتاژ جوشكاري قوس فلزي دستي در مدار باز دستگاه جوشكاري. خطر ديگر توليد شدن هيدروژن و اكسيژن در جوشكاري مرطوب توسط قوس است.

اقدام هاي احتياطي مي بايستي در مورد بلند كردن كپسول هاي گاز نيز رعايت شود. به اين دليل كه آنها به صورتي بالقوه توانايي زيادي براي منفجر شدن دارا هستند. خطر بعدي اي كه سلامت يا جان جوشكار را تهديد مي كند نيتروژني است كه در فشار زياد در معرض هوا قرار گرفته و مي تواند به وي آسيب برساند. اقدامات احتياطي شامل فراهم آوري يك منبع گاز يا هواي اضطراري مي شود كه در كنار غواص قرار گرفته است و نيز اتاقك فشار زدايي براي جلوگيري از خفگي توسط نيتروژن كه بعد از اشباع شدن روي سطح پخش مي شود.

در سازه هايي كه از جوشكاري مرطوبِ زير آب استفاده مي كنند، بازرسي بعد از جوشكاري ممكن است بسيار مشكل تر از جوشكاري هايي باشد كه در محيط بيرون و در معرض هوا انجام مي پذيرد. اطمينان از بي نقص بودن چنين جوشكاري هايي به مراتب اهميت بيشتري پيداكرده و در واقع احتمال اينكه عيب و كاستيِ ناشناخته اي پديدار شود، وجود دارد.



× مزاياي جوشكاري خشك

1. ايمني غواص – جوشكاري در يك اتاقك صورت گرفته كه موجب مصون ماندن جوشكار از جريانات اقيانوسي و يا احتمالاً موجودات دريايي مي شود. اين جايگاه خشك و گرم از روشنايي مطلوبي برخوردار بوده و از سيستم كنترل محيط خاصي نيز بهره مي گيرد(ESC)6 .

2. كيفيت خوب جوش – اين روش توانايي ايجاد جوش هايي را دارد كه حتي مي توان آن را با جوش هاي موجد در فضاي باز و در مجاورت هوا مقايسه كرد. دليل اين امر اينست كه ديگر آبي وجود ندارد كه بخواهد جوش را خاموش و يا قطع كند. و نيز اينكه ميزان هيدروژن (H2) توليدي آن خيلي كمتر از جوشكاري هاي مرطوب است.

3. كنترل سطح­ – آماده سازي اتصال، همترازي لوله، بررسي آزمايش ضد مخرب (NDT)(7) و غيره به صورت عيني كنترل و تنظيم مي شوند.


4. آزمون غير مخرب (‌ NDT) – آزمون غير مخرب براي محيط خشك جايگاه تسهيل شده است.

× معايب جوشكاري خشك

1. اتاقك يا جايگاه جوشكاري تجهيزات پيچيده و خدمات پشتيباني زيادي را مستلزم مي داند و خود اتاقك به طرز غير متعارفي پيچيده است.

2. هزينه و ارزش مالي اين اتاقك به صورت قابل ملاحظه اي بالا بوده و بسته به عمق محل كار هزينه آن افزايش مي يابد. عمق محل جوشكاري در كار تاثير مي گذارد، طوري كه در اعماق بيشتر جمع كردن قوس و استفاده از ولتاژ هاي بالتر و متناسب با آن لازم و ضروري مي باشد. انجام يك كار جوشكاري بدين شكل هزينه اي بالغ بر 80000 دلار دارد. و نيز گاهي اوقات نمي توان از يك اتاقك براي چند كار مختلف استفاده كرد، كه البته اين مشكل بستگي به نوع كارها و ميزان تفاوت آنها دارد.



× مزاياي جوشكاري مرطوب

جوشكاري مرطوب كه در زير آب به صورت دستي صورت مي گيرد، در مرمت و بازسازي سازه هاي فراساحلي در سالهاي اخير به سرعت در حال رشد و گسترش است.

از جمله فوايد جوشكاري مرطوب مي توان به موارد زير اشاره كرد:

1. چند كاره بودن و داشتن هزينه كمتر در جوشكاري مرطوب باعث شده كه ميل و اشتياق بيشتري به اين روش وجود داشته باشد.

2. برخورداري از سرعت مناسب در هنگام اجراي طرح از ديگر مزاياي اين روش است.

3. در مقايسه با جوشكاري خشك هزينه كمتري دارد.

4. در اين روش جوشكار مي تواند به قسمت هايي از سازه هاي فرا ساحلي دسترسي داشته باشد كه با استفاده از روش هاي ديگر قابل جوشكاري نيست.

5. احتياج به هيچ نوع محصور سازي نبوده و بنابراين زماني نيز براي آن تلف نخواهد شد. تجهيزات و دستگاههاي استاندارد مرسوم به آساني قابل استفاده است . به وسايل زيادي هم براي انجام يك كار جوشكاري مورد نياز نيست.



× معايب جوشكاري مرطوب

اگر چه جوشكاري مرطوب كاربرد گسترده اي پيدا كرده است ولي همچنان از وجود نواقصي رنج مي برد، از آن جمله مي توان به موارد زير اشاره كرد:

1. آبديدگي سريع فلز جوشكاري- دليل اين آبديدگي آبي است كه در اطراف آن وجود دارد. اگرچه آبديدگي نيروي تنش پذيري را در جوشكاري افزايش مي دهد ولي ميزان كش پذيري و موثر بودن جوش را كاهش داده، سختي و روزن داري آن را بالا مي برد.

2. توليد زياد هيدروژن- حجم بسيار زيادي از هيدروژن در منطقه جوشكاري ايجاد مي شود كه بر اثر تفكيك بخار آب در منطقه قوس به وجود آمده است.H2 موجود در محيط تحت تاثير گرما (HAZ)(8) در فلز جوشكاري حل مي شود كه باعث ايجاد ترك خوردگي و شكاف هاي ميكروسكوپيك مي شود.

3. از ديگر معايب آن ديد پذيري كم است. گاهي اوقات جوشكار نمي تواند به درستي منطقه مورد نظر را جوش دهد



× نحوه عملكرد جوشكاري مرطوب

پروسه ي جوشكاري مرطوب در زير آب طي مراحل زير صورت مي پذيرد:

قطعه كاري كه قرار است جوش داده شود به يك طرف مدار الكتريكي متصل بوده و الكترود فلزي در طرف ديگر مدار. اين دوقسمت از مدار (الكترود و قطعه كار) كمي به يكديگر نزديك شده ولي بعد از مدتي از يكديگر فاصله مي گيرند. در حين نزديك شدن الكترود به قطعه كار، جريان الكتريكي وارد شكاف شده و باعث ايجاد يك جرقه الكتريكي پايستار مي شود(قوس) و باعث ذوب شدن فلز در آن ناحيه و شكل گرفتن حوضچه جوش مي شود. در اين زمان، نوك الكترود ذوب شده و ذره هاي كوچك فلز در حوضچه مذاب جمع مي شود. در طول اين عمل جريان مذابي، نوك الكترود را پوشش داده و روكش الكترود گاز محافظ را ايجاد مي كند. كه موجب استحكام بخشيدن به قوس شده و همان طور كه گفته شد از جريان فلز مذاب محافظت مي كند. قوس در يك منطقه حفره مانند ذوب مي شود و جوش را پديدار مي سازد.

× پيشرفت هاي حاصل در زمينه جوشكاري در زير آب

مدت هاي مديدي جوشكاري مرطوب به عنوان يك تكنيك جوشكاري، در زير آب مورد استفاده قرار مي گرفته و هنوز هم ابن روش مرسوم است. اخيراً با پيشرفت هايي كه در زمينه ساخت سازه هاي فرا ساحلي صورت گرفته، اهميت جوشكاري زير آبي را به طرز پيش بيني شده اي بالا برده است. اين امر منجر به توسعه يافتن روش هاي جوشكاري ديگر از قبيل جوشكاري سايشي9، جوشكاري انفجاري10 و جوشكاري عمودي11 شده است كه هم اكنون مطالب قابل قبول و كافي در اين زمينه براي ارائه وجود ندارد.



× گستره ي پيشرفت هاي آينده

جوشكاري قوس فلزي دستي مرطوب همچنان براي نوسازي و احياء سازه هاي زير آبي مورد استفاده قرار مي گيرد اما كيفيت آن كافي نبوده و مستعد شكست هيدروژني مي باشداز اين رو جوشكاري هاي بيش فشار خشك كيفيت بهتري نسبت به جوشكاري هاي مرطوب دارند.امروزه گرايش و رويه ميل به سوي اتوماسيون دارد.THOR-1 12 يا ربات تحت كنترل مدارِ بيش فشار كه از گاز بي اثر تنگستن استفاده مي كند، توسعه بخشيده شد تا در جاهايي كه غواص عمليات لوله كشي و نصب خط لوله را انجام مي دهد، بقيه پروسه كار را بر عهده گيرد.□



پي نوشت:



Van der Willigen

Manual Metal Arc Welding (MMA)

American Welding Society (AWS)
خشك نگه داشتن محفظه تحت فشار زياد
بار(Bar) واحد فشار بوده و هر يك بار برابر با يك ميليون dynes در سانتيمتر مربع است.

Environmental Control System (ECS)

Non-Destructive Testing (NDT)

Heat Affected Zone (HAZ)

Friction Welding

Explosive Welding

Stud Welding


12. THOR – 1 (TIG Hyperbaric Orbital Robot)

منابع:


1) D. J Keats, Manual on Wet Welding.

2) Annon, Recent advances in dry underwater pipeline welding, Welding Engineer, 1974.

3) Lythall, Gibson, Dry Hyperbaric underwater welding, Welding Institute.

4) W.Lucas, International conference on computer technology in welding.

5) Stepath M. D, Underwater welding and cutting yields slowly to research, Welding Engineer, April 1973.

6) Silva, Hazlett, Underwater welding with iron – powder electrodes, Welding Journal, 1971.

ØÑтRдŁ§
3rd March 2009, 01:55 PM
عیوب جوشکاری


چون مواد و فلزات تشکیل‌ دهنده و جوش‌ دهنده و گیرنده از لحاظ متالوژیکی بایستی دارای خصوصیات مناسب باشند، بنابراین جوشکاری از لحاظ متالوژیکی بایستی مورد توجه قرار گیرد که آیا قابلیت متالوژی و فیزیکی جوشکاری دو قطعه مشخص است؟ پس از قابلیت متالوژی ، آیا قطعه‌ای را که ایجاد می‌کنیم، از لحاظ مکانیکی قابل کاربرد و سالم است؟ آیا می‌توانیم امکانات و وسائل برای نیازها و شرایط مخصوص این جوشکاری ، مثلاً گاز و دستگاه را ایجاد نمائیم و برفرض ، ایجاد نیرو در درجه حرارت بالا یا ضربه زدن در درجه حرارت پایین ممکن باشد؟ زیرا استانداردهای مکانیکی و مهندسی و صنعتی جوشکاری باید در تمام این موارد رعایت شود تا جوش بدون شکستگی و تخلخل و یا نفوذ سرباره و غیره انجام گیرد.

تکرار می‌شود در جوشکاری تخصصی و اصولاً تمام انواع جوش ، قابلیت جوش خوردن فلزات را باید دقیقاً دانست. در مورد مواد واسطه و الکترود و پودر جوش ، باید دقت کافی نمود. محیط لازم قبل و در حین جوشکاری و پس از جوشکاری را مثلاً در مورد چدن ، باید بوجود آورد. گازهای دستگاههای مناسب و انتخاب فلزات مناسب از لحاظ ذوب در کوره ذوب آهن و بعد در حین جوشکاری از لحاظ جلوگیری از صدمه گاز - آتش و مشعل و برق و هوای محیط و وضعیت جسمانی و زندگی جوشکار ، خود نکات اساسی دیگر هستند که مشکلات جوشکاریمی‌باشند.










روی هم افتادگی (انباشتگی جوش در کناره‌ها) overlap or over - roll




نقصی در کنار یا ریشه جوش که به علت جاری شدن فلز بر ری سطح فلز پایه ایجاد می شود بدون اینکه ذوب و جوش خوردن با آن ایجاد شود.

علت




1. سرطان حرکت کمتر از حالت نرمال یا طبیعی


2. زاویه نادرست الکترود


3. استفاده از الکترود با قطر بالا


4. آمپراژ خیلی کم

نتیجه




عوامل فوق کاری مانند بریدگی کناره دارد و یک منطقه تمرکز تنش از فلز جوش ترکیب نشده ایجاد می‌کند.

سوختگی یا بریدگی کناره جوش Underecut




شیاری در کنار یا لبه جوش که بر سطح جوش و یا بر فلز جوشی که قبلا را سبب شده است قرار دارد.

علت




1. آمپر زیاد


2. طول قوس زیاد


3. حرکت موجی زیاد الکترود


4. سرعت بسیار زیاد حرکت جوشکاری


5. زاویه الکترود خیلی به سطح اتصال متمایل بوده است.


6. سرباره با ویسکوزیته زیاد

نتیجه




عوامل فوق موجب یک منطقه تمرکز و یک منطقه مستعد برای ایجاد ترک خستگی می‌شود.

آخالهای سرباره Slag inclusion




به هر ماده غیر فلزی که در یک اتصال جوش بوجود می‌آید آخالهای سرباره می‌گویند؛ این آخالها می‌توانند در رسوب جوش نقاط ضعیفی ایجاد کنند.

علت




1. پاک نشدن مناسب سرباره از پاسهای قبلی


2. آمپراژ ناکافی


3. زاویه یا اندازه الکترود نادرست


4. آماده سازی غلط

نتیجه




آخالهای سرباره استحکام سطح مقطع جوش را کاهش می‌دهند و یک منطقه مستعد ترک ایجاد می‌کنند.

ذوب ناقص L.O.F) Lack of fusion )




عدم اتصال بین فلز جوش و فلز پایه یا بین پاسهای جوش

علت




1. استفاده از الکترودهای کوچک برای فولاد ضخیم و سرد


2. آمپراژ ناکافی


3. زاویه الکترود نامناسب


4. رعت حرکت بسیار زیاد


5. سطح کثیف (پوسته نورد ، لکه ، روغن و ...)

نتیجه




اتصال جوش را ضعیف می‌ماند و به یک منطقه مستعد ایجاد خستگی تبدیل می‌شود.

تخلخل Porosity




تخلخل سوارخ یا حفره‌ای‌ است که به صورت داخلی یا خارجی در جوش دیده می‌شود. تخلخل می‌تواند از الکترود مرطوب ، الکترود روکش شکسته یا از ناخالصی روی فلز پایه ایجاد شود.
همچنین به نامهای (مک لوله‌ای) ، (مک سطحی) و (سوراخهای کرمی) نیز شناخته می‌شود.










سایر علتها




1. سطح فلز پایه آلوده مثل آلودگیهای روغن ، غبار ، لکه یا زنگار


2. مرطوب بودن روکش الکترود


3. محافظت گازی ناکافی قوس


4. فلزات پایه با مقادیر بالای گوگرد و فسفر

نتیجه




به شدت استحکام اتصال جوش شده را کاهش می‌دهد. تخلخل سطحی به اتمسفر خورنده اجازه می‌دهد که فلز جوش را مورد حمله قرار دهد و موجب نقص در آن شود.

همراستا نبودن اتصال جوش Join misagnment




این مشکل معمولا همراستا و همسطح نبودن قطعاتی که به هم جوش می‌شوند نامیده می‌شوند. عدم همراستایی یک مشکل معمول در آماده سازی روشهای لب به لب است و هنگامی ایجاد می‌شود که صفحات ریشه و صفحات اتصال از فلز پایه در محل درست خود برای جوشکاری قرار نگرفته‌اند.

علت




1. مونتاژ نادرست قطعاتی که باید جوش شوند.


2. خال جوشهای ناکافی که می‌شکند یا بست زدن ناکافی که موجب حرکت می‌شود.

نتیجه




همراستا بودن جدی است، زیرا نقص در ذوب لبه ریشه موجب ایجاد مناطق تمرکز تنش می‌شود در سرویس دهی موجب شکست خستگی زود رس اتصال می‌شود.

نفوذ ناقص L.O.P) Lack of pentertation)




عدم نفوذ کامل فلز جوش به ریشه اتصال

علت




1. آمپر بسیار پائین


2. فاصله ریشه ناکافی


3. استفاده از الکترود با قطر بالا


4. سرعت حرکت زیاد

نتیجه




سرعت جوش را ضعیف می‌کند و به مستعد ایجاد خستگی تبدیل می‌شود.

ترک جوش Weld cracking




انواع مختلفی از عدم اتصال ممکن است در جوش یا مناطقی که تحت تأثیر حرارت قرار می‌گیرند، رخ دهد. جوشها ممکن است دارای تخلخل ، آخالهای سرباره یا انواع ترکها باشند. تخلخل و آخالهای سرباره شاید در جوش تا حدی قابل قبول باشد اما ترکها در جوش هرگز قابل قبول نمی‌باشند. وجود ترک در جوش یا در مجاورت جوش نشانگر این مسئله می‌باشد که حتما مشکلی در حین کار وجود داشته است. بررسی دقیق ترکها ، تعیین علت اجاد آنها و نیز راههای جلوگیری از آنها را برای ما امکان پذیر می‌سازد. در ابتدا ما باید به این مسئله توجه داشته باشیم که بین ترک و شکست تفاوت قائل شویم. منظور ما از ترک ، پدیده‌ای است که در اثر عواملی مانند انجماد ، سرد شدن و تنشهای داخلی که به علت انقباض جوش می‌باشد ایجاد می‌گردد. ترکهای گرم ، ترکهایی می‌باشند که در دماهای بالا رخ می‌دهند و معمولا به انجماد ربط دارند.

ترکهای سرد ترکهایی هستند که بعد از اینکه جوش به دمای اطاق رسید، رخ دهد و ممکن است حتی به HAZ رابط داشته باشد. بیشتر ترکها در اثر تنشهای فیزیکی انقباض که معمولا با کشیدن یا تغییر شکل جسم همراهی باشد در هنگام سرد شدن جوش رخ می‌دهد، ایجاد می‌شوند، اگر انقباض محدود شود، این تنشهای فیزیکی کرنشی ، تنش داخلی پسماند را بوجود می‌آورند که این تنهای پسماند منجر به ایجاد ترک می‌شوند. در واقع دو نیروی مخالف وجود دارد:


1. تنشی که بوسیله انقباض ایجاد می‌شود.


2. استحکام و سختی فلز پایه


تنشهای ناشی از انقباض با افزایش حجم فلزی که تحت انقباض قرار گرفته است، افزایش می‌یابد. جوشهایی در ابعاد بزرگ و فرآیندهایی با نفوذ زیاد کرنشهای انقباضی را افزایش می‌دهند. تنشهایی که در اثر کرنشهای انقباضی ایجاد می‌شود با افزایش استحکام فلز پر کننده و فلز پایه افزایش می‌یابد. همچنین وقتی که استحکام تسلیم افزایش باید تنش پسماند نیز افزایش می یابد.


1. ضرورت جوشکاری


2. پیشگرم


3. دمای بین پالسی


4. عملیات حرارتی پس از جوش


5. طراحی اتصال


6. روشهای جوشکاری


7. مواد پر کننده

ترک به صورت خط مرکزی




ترک به صورت خط مرکزی در مرکز یک پاس جوش معین قرار دارد. اگر انتهایی کپاس جوش داشته باشیم و اینپالیدرمرکز اتصال باشد آنگاه این ترکمرکزی در مرکزاتصال نیز رار خواهد داشت. در مورد پاس های چند تای که چندین پاس در هر لایه وجود دارد ترک مرکزی از نظر هندسیب ممکن است در مرکز اتصال قرار نداشته باشد. ار چه اغلب دیده می شود که در مرکزاتصال قرار دارد. علت ترک مرکزی یکی از سه پدیده زیر می باشد:




1. ترکی که ناشی از جدایش و تفکیک باشد.


2. ترکی که مربوط به شکل گرده جوش می‌باشد.


3. ترکی که مربوط به تغییرات سطحی می‌باشد.


متأسفانه تمام سه پدیده فوق خودشان را در قالب یک نوع آشکار می‌کنند و تشخیص دادن ترک مشکل می‌باشد. علاوه بر این ، تجربه‌ها نشان داده‌اند که اغلب 2 یا حتی 3 پدیده فوق با یکدیگر برهمکنش داده و در ایجاد ترک مؤثرند. در واقع درک مکانیسم اصلی هر یک از انواعترکهای مرکزی به ما کمک می‌کنند تا به دنبال راه حلی برای از بین بردن ترک باشیم.

ترک مرکزی ناشی از جدایش




این ترکها وقتی رخ می‌دهد که ترکیباتی با نقطه ذوب پایین نظیر فسفر ، روی ، مس و گوگرد در نقاط خاصی در حین فرآیند سرد شدن جدایش یابند. در حین فرآیند انجماد ، ترکیباتی با نقطه ذوب پایین در فلز مذاب به نواحی مرکزی اتصال رانده می‌شود چون آنها تا آخرین ترکیباتی هستند که شروع به انجماد می‌کنند و جوش در این نواحی تمایل به تفکیک و جدایش می‌یابد. در جوشکاری می‌توان از الکترودهایی با مقادیر بالای منگنز استفاده تا بتوانیم بر تشکیل سولفید آهن با نقطه ذوب پایین غلبه کنیم. متأسفانه این مفهوم نمی‌تواند برای مواد غیر فرار دیگری بجز گوگرد بکار رود.

ترک مرکزی ناشی از شکل گرده جوش




نوع دوم ترک مرکزی ، ترک ایجاد شده در اثر شکل پالس جوش می‌باشد، این ترک در فرآیندهایی که همراه با نفوذ عمیق می‌باشند نظیر فرآیند FCAW , SAWتحت محافظ CO2 دیده می‌شود. وقتی که یک پالس جوشکاری دارای عمق بیشتری نسبت به هضم آن جوش (در نمای سطح مقطع) باشد. برای رفع این نوع ترک ، پالسهای جوش باید دارای عرضی حداقل برابر با عمق باشد. توصیه می‌شود که نسبت پهنای جوش به عمق آن برابر با 1 به 14/1 به 1 باشد تا این نوع ترک رفع شود. اگر از پالسهای چندتایی استفاده شود هر پاس دارای پهنای نبت به عمق آن باشد، یک جوش فاقد ترک خواهیم داشت. وقتی که یک ترک مرکزی بخار شکل پاس تحت بررسی است، تنها راه حل این است که نسبت پهنای جوش به عمق آنرا تغییر دهیم.
این موضوع شاید در برگیرنده آن باشد که تغییری در طراحی اتصالها داشته باشیم. از آنجایی که عمق جوش تابعی از نفوذ می‌باشد شاید مفید باشد که مقدار نفوذ را کاهش دهیم بدین منظور می‌توانیم از آمپرهای پایینتر و الکترودهایی با قطرهای بالاتر استفاده کنیم. راهکارهای فوق دانسیته جریان را کاهش می‌دهد و مقدار نفوذ را محدود می‌کند.

ترک مرکزی ناشی از شرایط سطحی جوش




آخرین مکانیسمی که سبب ایجاد ترک مرکزی می‌باشد تغییر شرایط سطحی می‌باشد. وقتی جوشهایی با سطح مقعر ایجاد می‌شود تنشهای ناشی از انقباضهای داخلی موجب می‌شود که سطح جوش کشیده شود. برعکس وقتی که سطح جوش محدب باشد نیروی ناشی از انقباضهای درونی موجب می‌شود که سطح جوش فشرده می‌شود. سطح جوش مقعر ، اغلب ناشی از ولتاژهای بالای قوس می‌باشد. کمی کاهش در ولتاژ قوس موجب می‌شود که گرده جوش به حالت محدب تغییر شکل دهد و تمایل به ترک حذف گردد. سرعتهای حرکت بالا نیز ممکن است به این موضوع کمک کند و کاهش در سرعت حرکت جوشکاری ، مقدار پراکندگی توسط جوش را افزایش می‌دهد و سطح جوش به صورت محدب تغییر حالت می‌دهد. جوشکاری در حالت قائم سر پایین باعث ایجاد این نوع ترک می‌شود. جوشکاری در حالت قائم رو به بالا می‌تواند از بروز این نوع ترک جلوگیری نماید.

ترک منطقه متأثر از جوش




ترک منطقه متاثر از جوش (HAZ) بوسیله جدایشی که بلافاصله مجاور گرده جوش رخ می‌دهد مشخص می‌شود، اگر چه این نوع ترک مربوط به فرآیند جوشکاری می‌باشد با این حال ترکی است که در روی پایه رخ می‌دهد نه درخود جوش. این ترک به نام تک مجاور جوش ، ترک گوشه‌ای یا ترک تأخیری نیز نامیده می‌شود. چون این ترک بعد از اینکه فولاد در دمای f ْ400 انجماد یافته است رخ می‌دهد ترک انجمادی نیز نامیده می‌شود و چون با هیدروژن نیز همراه می‌باشد ترک همراه با هیدروژن نیز نامیده می‌شود. برای اینکه ترک HAZ رخ دهد سه شرط باید بطور همزمان برقرار باشد:




1. باید مقدار کافی هیدروژن وجود داشته باشد.


2. جوش باید به حد کافی نفوذ پذیر باشد.


3. باید به حد کافی تنشهای داخلی یا پسماند وجود داشته باشد.

حذف یکی از سه شرط فوق معمولا باعث می‌شود که این نوع ترک از بین برود. در جوشکاری ، یک راه برای حذف این نوع ترک این است که دو یا سه متغیر (مقدار جوش نفوذ پذیر جوش) را محدود کنیم. هیدروژن از منابع مختلفی می‌تواند وارد جوش شد. رطوبت و ترکیبات آلی منابع اصلی هیدروژن در جوش می‌باشند. هیدروژن می‌تواند در فولاد ، الکترود ، ترکییبات روپوش الکترود و در آتمسفر وجود داشته باشد.

ترک عرضی




ترک عرضی ترک متقاطع نیز نامیده می‌شود. ترکی است که در جهت عمود بر طول جوش ایجاد می‌شود. این نوع ترک از انواعی است که اغلب در جوشکاری با آن مواجه می‌شویم و معمولا جوشی که دارای استحکام بالاتری در مقایسه با فلز پایه می‌باشد دیده می‌شود. این نوع ترک می‌تواند همراه با هیدروژن نیز باشد و کل ترک منطقه متأثر از جوش HAZ که پیشتر شرح داده شد ناشی از مقدار بالای هیدروژن ، تنشهای پسماند و ریز ساختارهای حساس می‌باشد.
فرق عمده بین این دو ترک این می‌باشد که ترک عرضی در فلز جوش نتیجه تنش پسماند طولی می‌باشد. چنانچه پاس جوشکاری بصورت طولی انقباض یابد، فلز پایه در مقابل این نیرو مقاومت می‌کند و در واقع دچار تراکم و فشردگی می‌شود. استحکام بالای فلز پایه‌ای که در مجاورت جوش می‌باشد در برابر فشردگی ناشی از انقباض جوش مقاومت می‌کند و در واقع فشرده شدن جوش را محدود می‌کند. بخاطر ممانعتی که فلز پایه به عمل می‌آورد، تنشهای طولی در جوش گسترش می‌یابد.

وقتی با ترکهای عرضی مواجه می‌شویم باید سطح هیدروژن و شرایط نگهداری الکترودها را مد نظر داشته باشیم. در مورد ترک عرضی ، کاهش استحکام فلز جوش معمولا یکی از راهکارهای حذف این نوع ترک می‌باشد. تأکید زیادی بر روی فلز جوش وجود دارد چون فلز پر کننده به تنهایی ممکن است جوشی رسوب دهد که دارای استحکام پایینتری باشد و نیز تحت شرایط عادی فلزی نرم باشد. البته با تأثیر عناصر آلیاژی استحکام جوش بالا می‌رود و از نرمی آن کاسته می‌شود. استفاده از جوشهایی با استحکام پایینتر ، یک راه حل مؤثر در کاهش ترک عرضی مؤثر می‌باشد، البته به شریطی که استحکام جوش با استانداردهای تعریف شده مطابقت داشته باشد.

پیچیدگی




پیچیدگی یا اعوجاج تا حدی در تمام انواع جوشکاری وجود دارد، در بسیاری موارد آنقدر کوچک است که به سختی قابل رؤیت است، ولی در بعضی موارد باید پیش از جوشکاری به اعوجاجی که متعاقبا ایجاد می‌شود توجه کرد. مطالعه و بررسی اعوجاج بسیار پیچیده است و آنچه در ادامه آمده خلاصه است:
علل اعوجاج هنگامی که فلز تحت بار ، کرنش می‌کند یا حرکت می‌کند و تغییر شکل می‌دهد: تحت بار گذاری ضعیف فلزات بصورت الاستیک باقی می‌مانند. (به شکل اصلی خود باز می‌گردند یا پس از اینکه بار برداشته شد شکل می‌گیرند) که این تحت عنوان محدوده الاستیک شناخته می‌شود.
تحت بار خیلی زیاد ، فلزات تا حدی تحت تنش قرار می‌گیرند که دیگر به شکل اول خود باز نمی‌گردند یا شکل نمی‌گیرند و این نقطه (نقطه تسلیم) نامیده می‌شود (تنش تسلیم).

فلزات با حرارت دیدن انبساط می‌یابند و وقتی سرد می‌شوند منقبض می‌شوند، فلزات در حین جوشکاری گرم و سرد می‌شوند که موجب تنشهای بالای ناگهانی و اعوجاج می‌شوند. اگر این تنشهای زیاد از محدوده الاستیک بگذرند و از نقطه تسلیم نیز رد شوند، برخی پیچیدگیهای دائمی در فلز پدید می‌آید، تنش فلز در دمای بالا کاهش می‌یابد. اعوجاج اثر ناخواسته انبساط و انقباض فلز حرارت دیده است.

انواع پیچیدگی




سه نوع اصلی پیچیدگی وجود دارد:




1. زاویه‌ای


2. طولی


3. عرضی


کنترل پیچیدگی می‌تواند در سه مرحله انجام گیرد:




قبل از جوشکاری
حین جوشکاری
بعد از جوشکاری



کنترل پیچیدگی قبل از جوشکاری توسط روشهای زیر انجام می‌شود:




1. خال جوش زدن


2. گیره ، بست و نگهدارنده


3. پیشگرم کامل و سرتاسری


4. مونتاژ اولیه مناسب


کنترل اعوجاج پس از جوشکاری:




1. سرد کردن آرام


2. صافکاری شعله‌ای (حرارت دهی معکوس)


3. آنیل کردن


4. تنش زدایی


5. نرمال کردن


6. صافکاری مکانیکی


در سازه‌های فلزی ساختمان معمولا روشهای 1و2 بیشتر اعمال می‌گردد و سایر روشها در کارهای صنعتی بیشتر کاربرد دارند.

آنیل کردن




یک پروسه عملیات حرارت است که برای نرم کردن فلزات جهت کل سرد یا ماشین کاری بکار می‌رود، قطعه یا کار نهائی معمولا در کوره تا دمای بحرانی (برای فولاد با 0.52% کربن حدود Cْ 820 - 723) حرارت داده می‌شود و سپس به آرامی سرد می‌شود.

تنش زدائی




حرارت دهی یکنواخت قطعات جوش شده تا دمایی زیر دمای بحرانی است که با سرد کردن آرام دنبال می‌شود، این پروسه نقطه تسلیم فلز را کاهش می‌دهد، لذا تنشهای باقی مانده در قطعه کاهش می‌یابد.

نرمال کردن



پروسه‌ای برای ریز کردن ساختار دانه‌ای فلز است که موجب بهبود مقاومت آن در برابر شوک و خستگی می‌شود. در نرمال کردن قطعات جوش شده تا بالای ‌دمای بحرانی (Cْ 820 برای فولاد با کربن 0.25% (تقریبا یک ساعت برای هر nm 25 ضخامت حرارت می‌بیند و سپس در هوا سرد می‌شود (مستقیم کاری).

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد