PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : کاربرد انواع مختلف فولاد



ریپورتر
15th March 2010, 01:34 PM
کاربرد انواع مختلف فولاد

منبع : راسخون



فولاد

اصطلاح فولاد برای آلیاژهای آهن که بین ۰/۰۲۵ تا حدود ۲ درصد کربن دارند بکار می‌رود فولادهای آلیاژی غالبا با فلزهای دیگری نیز همراهند. خواص فولاد به درصد کربن موجود در آن، عملیات حرارتی انجام شده بر روی آن و فلزهای آلیاژ دهنده موجود در آن بستگی دارد.
کاربرد انواع مختلف فولاد

از فولادی که تا ۰٫۲ درصد کربن دارد، برای ساختن سیم، لوله و ورق فولاد استفاده می‌شود. فولاد متوسط ۰٫۲ تا ۰٫۶ درصد کربن دارد و آن را برای ساختن ریل، دیگ بخار و قطعات ساختمانی بکار می‌برند. فولادی که ۰٫۶ تا ۱٫۵ درصد کربن دارد، سخت است و از آن برای ساختن ابزارآلات، فنر و کارد و چنگال استفاده می‌شود.
ناخالصی‌های آهن و تولید فولاد

آهنی که از کوره بلند خارج می‌شود، چدن نامیده می‌شود که دارای مقادیری کربن، گوگرد، فسفر، سیلیسیم، منگنز و ناخالصی‌های دیگر است. در تولید فولاد دو هدف دنبال می‌شود:
• سوزاندن ناخالصی‌های چدن
• افزودن مقادیر معین از مواد آلیاژ دهنده به آهن
منگنز، فسفر و سیلیسیم در چدن مذاب توسط هوا یا اکسیژن به اکسید تبدیل می‌شوند و با کمک ذوب مناسبی ترکیب شده، به صورت سرباره خارج می‌شوند. گوگرد به صورت سولفید وارد سرباره می‌شود و کربن هم می‌سوزد و مونوکسید کربن (CO) یا دی‌اکسید کربن (CO۲) در می‌آید. چنانچه ناخالصی اصلی منگنز باشد، یک کمک ذوب اسیدی که معمولاً دی‌اکسید سیلسیم (SiO۲) است، بکار می‌برند:
• (MnO + SiO۲ -------> MnSiO۳(l
و چنانچه ناخالصی اصلی سیلسیم یا فسفر باشد (و معمولاً چنین است)، یک کمک ذوب بازی که معمولاً اکسید منیزیم (MgO) یا اکسید کلسیم (CaO) است، اضافه می‌کنند:
• (MgO+SiO۲------->MgSiO۲(l
(۶MgO + P۴O۱۰ -------> ۲Mg۳(PO۴)۲(l
کوره تولید فولاد و جدا کردن ناخالصی‌ها

معمولاً جداره داخلی کوره‌ای را که برای تولید فولاد بکار می‌رود، توسط آجرهایی که از ماده کمک ذوب ساخته شده‌اند، می‌پوشانند. این پوششی مقداری از اکسیدهایی را که باید خارج شوند، به خود جذب می‌کند. برای جدا کردن ناخالصی‌ها، معمولاً از روش کوره باز استفاده می‌کنند. این کوره یک ظرف بشقاب مانند دارد که در آن ۱۰۰ تا ۲۰۰ تن آهن مذاب جای می‌گیرد.
بالای این ظرف، یک سقف مقعر قرار دارد که گرما را روی سطح فلز مذاب منعکس می‌کند. جریان شدیدی از اکسیژن را از روی فلز مذاب عبور می‌دهند تا ناخالصی‌های موجود در آن بسوزند. در این روش ناخالصیها در اثر انتقال گرما در مایع و عمل پخش به سطح مایع می‌آیند و عمل تصفیه چند ساعت طول می‌کشد، البته مقداری از آهن، اکسید می‌شود که آن را جمع‌آوری کرده، به کوره بلند باز می‌گردانند.
روش دیگر جدا کردن ناخالصی‌ها از آهن

در روش دیگری که از همین اصول شیمیایی برای جدا کردن ناخالصی‌ها از آهن استفاده می‌شود، آهن مذاب را همراه آهن قراضه و کمک ذوب در کوره‌ای بشکه مانند که گنجایش ۳۰۰ تن بار را دارد، می‌ریزند. جریان شدیدی از اکسیژن خالص را با سرعت مافوق صوت بر سطح فلز مذاب هدایت می‌کنند و با کج کردن و چرخاندن بشکه، همواره سطح تازه‌ای از فلز مذاب را در معرض اکسیژن قرار می‌دهند.
اکسایش ناخالصی‌ها بسیار سریع صورت می‌گیرد و وقتی محصولات گازی مانند CO۲ رها می‌شوند، توده مذاب را به هم می‌زنند، بطوری که آهن ته ظرف، رو می‌آید. دمای توده مذاب، بی آنکه از گرمای خارجی استفاده شود، تقریباً به دمای جوش آهن می‌رسد و در چنین دمایی، واکنشها فوق‌العاده سریع بوده، تمامی‌ این فرایند، در مدت یک ساعت یا کمتر کامل می‌شود و معمولاً محصولی یکنواخت و دارای کیفیت خوب بدست می‌آید.
تبدیل آهن به فولاد آلیاژی

آهن مذاب تصفیه شده را با افزودن مقدار معین کربن و فلزهای آلیاژ دهنده مثل وانادیم، کروم، تیتانیم، منگنز و نیکل به فولاد تبدیل می‌کنند. فولادهای ویژه ممکن است مولیبدن، تنگستن یا فلزهای دیگر داشته باشند. این نوع فولادها برای مصارف خاصی مورد استفاده قرار می‌گیرند. در دمای زیاد، آهن و کربن با یکدیگر متحد شده، کاربید آهن (Fe۳C) به نام «'سمنتیت» تشکیل می‌دهند. این واکنش، برگشت‌پذیر و گرماگیر است:
• Fe۳C <------- گرما + ۳Fe + C
هرگاه فولادی که دارای سمنتیت است، به کندی سرد شود، تعادل فوق به سمت تشکیل آهن و کربن، جابجا شده، کربن به صورت پولکهای گرافیت جدا می‌شود. این مکانیزم در چدن‌ها که درصد کربن در آنها بیشتر است، اهمیت بیشتری دارد. برعکس، اگر فولاد به سرعت سرد شود، کربن عمدتاً به شکل سمنتیت باقی می‌ماند. تجزیه سمنتیت در دمای معمولی به اندازه‌ای کند است که عملا انجام نمی‌گیرد.
عملیات حرارتی

گرم کردن و سرد کردن زمانبندی شدهٔ فلزات، سرامیک‌ها و آلیاژها را به منظور بدست آوردن خواص مکانیکی و فیزیکی مطلوب،‌ عملیات حرارتی می‌نامند. عملیات حرارتی برای مواد غیرفلزی مانند شیشه‌ها و شیشه-سرامیک‌ها نیز بکار می‌رود.
عملیات حرارتی فولادها

کربن‌دهی سطحی
بازپخت کامل (آنیلینگ)
آنیلینگ جهت کروی کردن سمنتیت
نرماله کردن (نرمالیزاسیون)
کوئنچ‌کردن
برگشت دادن (تمپر کردن)
نمودار فازی آهن-کربن


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%281%29.jpg
نمودار فازی آهن-کاربید کربن

نمودار تعادلی آهن-کربن (Fe-C) راهنمایی است که به کمک آن می‌توان روش‌های مختلف عملیات حرارتی، فرآیندهای انجماد، ساختار فولادها و چدن‌ها و... را بررسی کرد.
قسمتی از این نمودار که در متالورژی اهمیت بیشتری دارد، قسمت آهن-کاربیدآهن (سمنتیت) است.
چون کاربید آهن یک ترکیب شبه‌پایدار است، بنابراین دیاگرام آهن-کربن را سیستم شبه‌پایدار می‌نامند. حالت پایدار کربن در فشار اتمسفر، کربن آزاد (گرافیت) است.
قسمت‌هایی که در نمودار با حروف یونانی مشخص شده‌اند، نشانگر محلول‌های جامد از نوع بین‌نشینی هستند.
تحولات هم‌دما (ایزوترم) در سیستم آهن-کربن شبه پایدار

خطوط افقی در نمودار، نشان دهندهٔ استحاله‌های هم‌دما هستند.
• استحالهٔ یوتکتیک : دما ۱۱۴۸ºC، غلظت کربن ۴٫۲۰ درصد
• استحالهٔ یوتکتوئید : دما ۷۲8ºC، غلظت کربن ۰٫۸۰ درصد
• استحالهٔ پریتکتیک : دما ۱۴۹۵ºC، غلظت کربن ۰٫۱۸ درصد
البته باید توجه داشت که غلظت‌ها و دماهای ذکرشده برای آهن-کربن خالص بوده و با حضور عناصر آلیاژی دیگر، این ثابت‌ها تغییر می‌کنند.
آلوتروپ‌های آهن

• آهن آلفا
• آهن گاما
• آهن دلتا
فازها و ساختارهای مخلتف نمودار فازی

• فریت
• اوستنیت
• سمنتیت
• لدبوریت
• پرلیت
• بینیت
• مارتنزیت
آهن آلفا

آهن آلفا یکی از آلوتروپ‌های آهن است. این آلوتروپ از دمای ۲۷۳- درجه سانتیگراد تا ۹۱۰ درجه سانتیگراد پایدار است. این آلوتروپ دارای ساختمان بلوری مکعبی مرکزپر (bcc) است.
ثابت شبکهٔ آهن آلفای فرومغناطیس، ۲/۸۶ آنگستروم است.
آهن گاما

آهن گاما یکی از آلوتروپ‌های آهن است که در محدودهٔ دمایی ۹۱۲ تا ۱۳۹۴ درجه سانتیگراد پایدار بوده و ساختمان بلوری fcc (مکعبی مرکزپر) دارد.
آهن دلتا

آهن دلتا یکی از آلوتروپ‌های آهن است که از دمای ۱۴۰۱ درجه سانتیگراد تا ۱۵۳۹ درجه سانتیگراد (نقطهٔ ذوب آهن) پایدار است.
آهن دلتا دارای ساختمان بلوری مکعبی مرکزپر (bcc) است. آهن دلتا دارای خاصیت پارامغناطیس بوده و ثابت شبکه‌ی آن بزرگ‌تر از آهن آلفا است.
ثابت شبکهٔ آهن دلتا، ‎۲/۹۳ آنگستروم است.
فریت

به محلول جامد از نوع بین‌نشینی کربن در آهن آلفا α-Fe (آهن مکعبی مرکزپر) فِریت گفته می‌شود.
حداکثر غلظت کربن در فریت حدود ۲/. درصد وزنی و در دمای ۷۲۷ درجه سانتیگراد است.
مقاومت کششی فریت در حدود ۴۰۰۰۰ پسی (psi) است.
اوستنیت


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%282%29.jpg
نمودار فازی تعادلی آهن-کاربید آهن

اوستِنیت (به انگلیسی: Austenite) محلول جامد از نوع بین‌نشینی کربن در آهن گاما (آهن مکعبی وجوه مرکزپر) است.
حداکثر حلالیت کربن در آهن گاما، ۲ درصد در دمای ۱۱۴۷ درجه سانتیگراد است. اوستنیت در دمای محیط پایدار نیست.
ریشه لغوی

نام این فاز از ویلیام چاندلر روبرتز-اوستن متالورژیست انگلیسی گرفته شده‌است.
سمنتیت

سِمِنتیت یا کاربید آهن یک ماده مرکب شیمیایی به فرمول شیمیایی Fe3C دارای ‎۶/۶۷ درصد کربن با ساختار بلوری ارتورومبیک است. سمنتیت فازی بسیار سخت و شکننده است.
لدبوریت


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%283%29.jpg
نمودار فازی تعادلی آهن-کاربید آهن

لدبوریت (به آلمانی: Ledeburit) به مخلوط یوتکتیکی اوستنیت و سمنتیت گفته می‌شود که از مذابی با ۴/۳ درصد کربن در دمای ۱۱۴۷ درجه سانتیگراد تحت یک واکنش یوتکتیکی حاصل می‌شود. از آنجایی که اوستنیت در دمای محیط پایدار نیست و بر اساس یک واکنش یوتکتوئیدی به پرلیت تبدیل می‌شود، بنابراین ساختمان لدبوریت در دمای محیط بصورت پرلیت و سمنتیت خواهد بود.
نام این ساختار از کارل هاینریش آدولف لدبور متالورژیست آلمانی گرفته شده‌است.
پرلیت


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%284%29.jpg
نمودار فازی تعادلی آهن-کاربید آهن
پرلیت به مخلوط یوتکتوئیدی فریت و سمنتیت ‌گفته می‌شود.
پرلیت تحت یک تحول یوتکتوئیدی از آهن گاما با ۰/۸ درصد کربن در ۷۲۳ درجه سانتیگراد حاصل می‌شود.
خواص مکانیکی

مقاومت کششی پرلیت سه برابر فریت است یعنی تقریباً ۱۲۰۰۰۰ psi
بینیت

بینیت (به انگلیسی: Bainite) یک محصول ریزساختاری از تجزیه‌ی یوتکتوئید است. این ساختار هنگامی ایجاد می‌شود که یک فاز دما-بالا هنگام سرمایش، به دو فاز متفاوت تجزیه می‌شود.
تفاوت این ساختار با پرلیت در مورفولوژی آن است. بینیت مخلوط غیرلایه‌ای است و زمانی به وجود می‌آید که سرعت رشد دو فاز محصول متفاوت باشد.
با اینکه ساختار بینیت در بسیاری از آلیاژهای غیرفلزی نیز دیده‌شده‌است، اما تحقیقات در این زمینه عمدتاً بر روی آلیاژهای فولادی متمرکز بوده است.
مارتنزیت

مارتنزیت (به آلمانی: Martensite) بطور کلی به ساختارهای بلورینی گفته می‌شود که توسط استحاله مارتنزیتی به وجود بیایند. اما این اصطلاح بیشتر به فاز مارتنزیت در فولادهای سخت‌شده اطلاق می‌شود.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%285%29.jpg
تصویر میکروسکوپ نوری بازتابی از مارتنزیت سوزنی در فولاد AISI 4140 آستنیته شده در ۸۵۰ درجه سانتیگراد و کوئنچ شده در روغن
اگر اوستنیت به قدری سریع سرد شود که هیچ یک از استحاله‌های بر پایهٔ نفوذ در آن اتفاق نیافتد و فوق سرمایش تا حدی ادامه یابد که ساختار fcc پایدار نباشد، این ساختار بصورت برشی به bcc تبدیل می‌شود که از کربن فوق اشباع شده است. فاز حاصل را مارتنزیت می‌نامند.
ریشه لغوی

مارتنزیت از نام متالورژیست آلمانی آدولف مارتنز گرفته شده است.
تهيه فولاد

اطلاعات اولیه محصول کوره ذوب آهن ، چدن است که معمولا دارای ناخالصی کربن و مقادیر جزئی ناخالصی‌های دیگر است که به نوع سنگ معدن و ناخالصی‌های همراه آن و همچنین به چگونگی کار کوره بلند ذوب آهن بستگی دارد. از آنجایی که مصرف عمده آهن در صنعت بصورت فولاد است، از این رو ، باید به روش مناسب چدن را به فولاد تبدیل کرد که در این عمل ناخالصی‌های کربن و دیگر ناخالصی‌ها به مقدار ممکن کاهش ‌یابند. روشهای تهیه فولاد از سه روش برای تهیه فولاد استفاده می‌شود: روش بسمه در این روش ، ناخالصی‌های موجود در چدن مذاب را به کمک سوزاندن در اکسیژن کاهش داده ، آن را به فولاد تبدیل می‌کنند. پوشش جدار داخلی کوره بسمه از سیلیس یا اکسید منیزیم و گنجایش آن در حدود 15 تن است. نحوه کار کوره به این ترتیب است که جریانی از هوا را به داخل چدن مذاب هدایت می‌کنند تا ناخالصی‌های کربن و گوگرد به‌صورت گازهای SO2 و CO2 از محیط خارج شود و ناخالصی‌های فسفر و سیلیس موجود در چدن مذاب در واکنش با اکسیژن موجود در هوا به‌صورت اکسیدهای غیر فرار P4O10 و SiO2 جذب جدارهای داخلی کوره شوند و به ترکیبات زودگداز Mg3(PO4)2 و MgSiO3 تبدیل و سپس به‌صورت سرباره خارج شوند. سرعت عمل این روش زیاد است، به همین دلیل کنترل مقدار اکسیژن مورد نیاز برای حذف دلخواه ناخالصی‌های چدن غیرممکن است و در نتیجه فولاد با کیفیت مطلوب و دلخواه را نمی‌توان به این روش بدست آورد.
روش کوره باز (یا روش مارتن) در این روش برای جدا کردن ناخالصی‌های موجود در چدن ، از اکسیژن موجود در زنگ آهن یا اکسید آهن به جای اکسیژن موجود در هوا در روش بسمه (به منظور سوزاندن ناخالصی‌هایی مانند کربن ، گوگرد و غیره) استفاده می‌شود. برای این منظور از کوره باز استفاده می‌شود که پوشش جدار داخلی آن از MgO و CaO تشکیل شده است و گنجایش آن نیز بین 50 تا 150 تن چدن مذاب است. حرارت لازم برای گرم کردن کوره از گازهای خروجی کوره و یا مواد نفتی تأمین می‌شود. برای تکمیل عمل اکسیداسیون ، هوای گرم نیز به چدن مذاب دمیده می‌شود. زمان عملکرد این کوره طولانی‌تر از روش بسمه است. از این نظر می‌توان با دقت بیشتری عمل حذف ناخالصی‌ها را کنترل کرد و در نتیجه محصول مرغوب‌تری بدست آورد. روش الکتریکی از این روش در تهیه فولادهای ویژه‌ای که برای مصارف علمی ‌و صنعتی بسیار دقیق لازم است، استفاده می‌شود که در کوره الکتریکی با الکترودهای گرافیت صورت می‌گیرد. از ویژگی‌های این روش این است که احتیاج به ماده سوختنی و اکسیژن ندارد و دما را می‌توان نسبت به دو روش قبلی ، بالاتر برد.
این روش برای تصفیه مجدد فولادی که از روش بسمه و یا روش کوره باز بدست آمده است، به منظور تبدیل آن به محصول مرغوبتر ، بکار می‌رود. برای این کار مقدار محاسبه شده ای از زنگ آهن را به فولاد بدست آمده از روشهای دیگر ، در کوره الکتریکی اضافه کرده و حرارت می‌دهند. در این روش ، برای جذب و حذف گوگرد موجود در فولاد مقدار محاسبه شده‌ای اکسید کلسیم و برای جذب اکسیژن محلول در فولاد مقدار محاسبه شده ای آلیاژ فروسیلیسیم (آلیاژ آهن و سیلیسیم) اضافه می‌کنند. انواع فولاد و کاربرد آنها از نظر محتوای کربن ، فولاد به سه نوع تقسیم می‌شود: فولاد نرم این نوع فولاد کمتر از 0,2 درصد کربن دارد و بیشتر در تهیه پیچ و مهره ، سیم خاردار و چرخ دنده ساعت و ... بکار می‌رود. فولاد متوسط این فولاد بین 0,2 تا 0,6 درصد کربن دارد و برای تهیه ریل و راه آهن و مصالح ساختمانی مانند تیرآهن مصرف می‌شود. فولاد سخت فولاد سخت بین 0,6 تا 1,6 درصد کربن دارد که قابل آب دادن است و برای تهیه فنرهای فولادی ، تیر ، وسایل جراحی ، مته و ... بکار می‌رود.
فولاد های مقاوم حرارتی :

امروزه فولادها در شرایط متغیر و گسترده ای ؛ شامل محیط هایی با دمای بالا و خورنده تحت شرایط تنش استاتیكی و دینامیكی بكار می روند. از قبیل دریچه های موتور هواپیما ، حامل های كوره ، رتورت ها ، واحدهای كراكینگ نفت و توربین های گازی . سه مشخصه برای فلزاتی كه در دمای بالا به كار می روند ؛ مورد نیاز است :
1- مقاومت به اكسیداسیون و پوسته شدن
2- حفظ استحكام در دمای كاری
3- پایداری ساختار ؛ با توجه به رسوب كاربیدها ، كروی شدن ، كاربیدهای سیگما، تردی بازپخت
دیگر ویژگی ها نیز ممكن است در كاربرد مهم باشند ؛ همچون مقاومت ویژه و ضریب حرارتی برای اهداف الكتریكی ، ضریب انبساط برای واحدهای ساختمانی و مقاومت به نفوذ در اثر پدیده سوختن در بعضی كاربردهای كوره ای . در مورد فولادهای توربین های گازی مشخصات دیگری نیز مطرح می شود ، ظرفیت میرایی داخلی و استحكام خستگی ، حساسیت به فاق و استحكام ضربه ای ( سرد و گرم ) ، مشخصه جوشكاری و ماشینكاری ، بویژه در رتورهای بزرگ كه باید با حداقل مقاطع جوشكاری شده ساخته شوند .
پوسته اكسیدی كه بر روی آهن شكل می گیرد متخلخل بوده و چسبنده نیست، اما این پوسته در اثر اضافه كردن عناصر ویژه ای به فولاد ، چسبنده و محافظ می شود . این عناصر كرم ، سیلیسیم و آلومینیوم هستند و آنها بوسیله میل تركیبی زیاد با اكسیژن توصیف می شوند ؛ اما واكنش بوسطه شكل گیری فیلم اكسیدی خنثی به سرعت متوقف می شود. مقاومت به اكسیداسیون فولاد نرم بوسیله شكل گیری آلیاژ آهن - آلومینیوم در سطح ، به مقدار زیادی بهبود می یابد. این عمل به وسیله حرارت دادن در 0C 1000 و تماس با پودر آلومینیوم (calorising ) یا اسپری حرارتی انجام می شود.
بهبود مقاومت خزشی نیز بوسیله روش های زیر بدست می آید :
- بالا بردن دمای نرم شدن بوسیله انحلال عناصر آلیاژی
- استفاده معقول از رسوب سختی در دمای كاری ، بدون پدیده فراپیری . سختی فاز ثانویه شدیدا وابسته به درجه و یكنواختی ، پراكندگی بدست آمده است و ضریب خزش وابسته به دامنه فاصله اجزا است .
- كنترل درجه كارسختی در بازه دمایی مناسب كه اغلب اندازه خزشی اولیه را كاهش می دهد.
- تغییرات در پروسه تولید ، اكسیژن زدایی و ذرات درون مرزهای كریستالی نیز می توانند روی خواص خزشی تاثیر گذار باشند.
- ذوب در خلا مزایایی دارد كه در روش های معمول نمی توان به آنها دست یافت .
خواص مكانیكی نیز بوسیله اضافه كردن عناصر گوناگون بهبود بخشیده می شود ؛ كبالت ، تنگستن و مولیبدن باعث استقامت فولاد در برابر عمل تمپر كردن می شود. فولادهای آستنیتی آلیاژی هیچ تغییری ندارندو بنابراین بوسیله سرد كردن در هوا سخت نمی شوند . اما مقاومت به سایش آنها خوب نیست . مقدار كافی از عناصر آلیاژی همچون سیلسیم و كرم خط Ac را بالا می برد. فولاد با درصد بالای نیكل نباید در دمای بالا در تماس با دی اكسید گوگرد و یا دیگر تركیبات گوگردی قرار گیرد ؛ چون فیلم های كریستالی سولفید نیكل شكل می گیرد.
در فولادهایی با كرم بالا كاربیدها به هم پیوسته و بزرگ می شوند، كه این منجر به كم كردن مسدود شدن رشد دانه های فریت در دمای بالای 0C 700 می شود. رشد بیش از اندازه دانه ها باعث كم شدن تافنس می شود. همچنین رشد دانه در بالای 0C 1000 در فولاد های آستنیتی اتفاق می افتد، اما هیچ مشكلی بوجود نمی آید . چون آنها حتی در شرایط دانه های درشت چقرمه و داكتیل باقی می مانند. هنگام گرم كردن در بازه 0C 500- 900 فولادهای آستنیته ، كاربیدها در طول مرزهای آستنیت رسوب نمی كنند و بعلت اینكه ترك های درون بلوری احتمالا افزایش می یابند اگر فولاد تحت تنش پیوسته در شرایط كششی در این رنج دمایی قرار گیرد. فولادهای فرتیك و آستنیتیك در تركیب ویژهای بوسیله شكل گیری فاز سیگما ترد می شوند.
شناخت فولادهاي زنگ نزن


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%286%29.jpg
آهن خالص بسيار نرم تر از آن است كه بتواند به قصد ساختارش از آن استفاده شود. اما اضافه كردن مقداري از عناصر ديگر ( مانند كربن، منگنز، سيليكون) به طور مشخص استحكام مكانيكي آن را افزايش مي دهد. در مورد كروم اضافه شده به آهن مزيت ديگري وجود دارد كه باعث افزايش قابل توجهي در مقاومت خوردگي نسبت به آهن خالص مي شود.
فولاد زنگ نزن يك لغت عمومي براي يك خانواده بزرگ از آلياژهاي مقاوم در برابر خوردگي كه حداقل% 5/10 كروم دارند، مي باشد (مطابق با استاندارد اروپايي EN 10088) . مهمترين ويژگي براي آلياژهاي حاوي كروم در گروه فولادهاي زنگ نزن دارا بودن كروم به حدي است كه آنها را نسبت به خوردگي، اكسيداسيون و گرما مقاوم مي سازد.
فيلم اکسيد کروم نازک ولي فشرده که روي سطح فولاد زنگ نزن تشکيل مي شود باعث ايجاد مقاومت خوردگي مي شود. از جمله ويژگي هاي ديگر اين آلياژها شكل پذيري عالي، چقرمگي زياد در دماي پايين و مقاومت خوب در برابر پوسته شدن، اكسايش و خزش در دماهاي بالاست.
ممكن است عناصر ديگري نظير نيكل، موليبدن،كربن، منگنز، نيتروژن، گوگرد، فسفر، سيليكون و... نيز در اين فولاد به كار رود. نيكل عمدتاً موجب بهبود انعطاف پذیری و فرم پذیری فولاد ضدزنگ مي شود . موليبدن نيز باعث افزايش مقاومت خوردگي در محيط هاي كلريدي و كاهش احتمال ترك برداشتن در آلياژهاي Fe-Cr و آلياژهاي Fe-Cr-Ni مي شود. حضور منگنز در فولادهاي زنگ نزن باعث افزايش سختي پذيري و نيتروژن نيز باعث افزايش مقاومت در برابر خوردگي حفره اي فولادهاي زنگ نزن مي شود. كربن نيز يك عنصرآستنيت زاي قوي است و استحكام فولاد را افزايش مي دهد. اثر كربن در مقاومت به خوردگي در تمام آلياژهايي كه كربن حضور دارد ديده مي شود. اگر كربن با كروم يك تركيب جداگانه مثل كاربيد كروم بسازد، با مصرف كروم از محلول جامد اثر نامطلوبي بر روي مقاومت به خوردگي آلياژ خواهد گذاشت. اين اثر زماني بوجود مي آيد كه آلياژ به آرامي پس از كار گرم يا آنيلينگ سرد شود كه سبب تشكيل رسوب ناخواسته كاربيد كروم مي شود. اين رسوب در مرزدانه ها تشكيل مي شود و باعث كاهش مقاومت به خوردگي فولاد مي شود.
فولادهاي زنگ نزن به پنج گروه تقسيم مي شوند: مارتنزيتي، فريتي، آستنيتي، آستنيتي- فريتي يا دوفازي و رسوب سختي.
فولادهاي زنگ نزن مارتنزيتي( Fe-Cr-C-(Ni-Mo)) حاوي 5/11تا %18 كروم و در حدود 15/0تا %2/1 كربن است و در مقايسه با ديگر فولادهاي زنگ نزن موليبدن هم در تركيب آن مي تواند استفاده شود. بيشترين كاربرد اين فولادها در تيغه هاي چاقو، ابزار جراحي و شافت ها و ... است.
فولادهاي زنگ نزن فريتي(Fe-Cr-Mo) داراي 5/10 تا %30 كروم و %8/0 كربن است. اين فولاد به دليل افزايش مقاومت به خوردگي در مقابل تنش هاي كلريدي در سيستم هاي اگزوز خودرو و قسمت هاي داخلي خودرو استفاده مي شود. اين گروه زماني انتخاب مي شوند كه چقرمگي ضرورت اوليه نباشد و مقاومت به خوردگي در مقابل تنش هاي كلريدي مورد نياز باشد.
در فولادهاي زنگ نزن آستنيتي(Fe-Cr-Ni-Mo) كربن در حد پايين و كمتر از%8/. نگه داشته مي شود وكروم در محدوده 16 تا %28 متغير و ميزان نيكل 5/3 تا % 32 است. اين آلياژ با عمليات حرارتي سخت نمي شوند و خواص كليدي مانند مقاومت به خوردگي، انعطاف پذيري و چقرمگي در اين فولادها بسيار عالي است. كاربرد اين فولادها در تجهيزات مواد غذايي، تجهيزات محصولات شيميايي، كاربردهاي خانگي و ساختماني است.
در فولاد زنگ نزن آستنيتي- فريتي(Fe-Cr-Ni-Mo-N) نيز ميزان كربن در حد پايين و كمتر از %3/0 در نظر گرفته مي شود. كرم نيز در رنج 21 تا %26 و ميزان نيكل حدود 5/3 تا %8 متغير است. اين آلياژها ممكن است بيش از %4 موليبدن داشته باشد. اين آلياژ داراي خاصيت مغناطيسي است و استحكام كششي و استحكام تسليم بالاتري نسبت به فولادهاي زنگ نزن آستنيتي دارند. كاربردهاي متداول اين آلياژ در كارخانه هاي پتروشيمي، كارخانه هاي توليد نمك، مبدل هاي حرارتي و صنعت كاغذسازي است.
آخرين گروه از فولادهاي زنگ¬نزن فولاد زنگ¬نزن رسوب سختي(Fe-Cr-Ni-(Mo-Al-Cu-Nb)-N(PH)) مي¬باشد. استحكام بالا، مقاومت خوردگي متوسط، توليد آسان از مزيت هاي اوليه ارايه شده توسط اين نوع آلياژ است. بعد از عمليات حرارتي در دماي پايين حدود (660-500) درجه سانتيگراد استحكام بسيار افزايش مي يابد.
اگر دماهاي كمتر انتخاب شود اعوجاج در قطعه كمتر رخ مي دهد كه آنها را براي مصارف با دقت بالا مي توان به كار برد.
فولادهاي زنگ نزن رسوب سختي شده داراي ميكروساختاري از مارتنزيت يا آستنيت مي باشد. فولادهاي آستنيتي مي توانند با عمليات حرارتي تبديل به نوع مارتنزيتي شوند البته قبل از اينكه رسوب سختي رخ دهد. رسوب سختي زماني رخ مي دهد كه عمليات حرارتي باعث تشكيل شدن تركيبات بين فلزي شود.
رايج ترين موارد استفاده از اين آلياژ در صنايع هوافضا و ديگر صنايع با تكنولوژي بالاست.
صنعت فولاد ايران در جهان چه جايگاهي دارد؟ (گزارش آماري)

جهت آغاز اراية تحليل‌هايي از صاحب‌نظران و مسئولين پيرامون صنعت فولاد، لازم است گزارش آماري در خصوص ميزان توليد و مصرف، صادرات و واردات و اشتغالزايي و غيرة صنعت فولاد در جهان و ايران ارايه شود. متن زير كه با استناد به آمار ارايه شده توسط مؤسسه بين‌المللي آهن و فولاد (ويرايش سال ۲۰۰۳) تهيه شده است جايگاه ايران و وضعيت صنعت فولاد جهان را به اختصار نشان مي‌دهد:
فولادها تركيبات بسيار متنوعي از آهن، كربن و عناصر آلياژي هستند به طوري¬كه مي‌توان با تغيير مقدار و نوع اين عناصر، تركيبات مختلف فولادي با خواص بسيار جالب و متفاوت را توليد نمود. اگرچه تاريخچه توليد آهن و فولاد به حدود 3000 سال قبل برمي‌گردد، ولي روش¬هاي جديد جهت توليد محصولات فولادي در قرن 19 ميلادي به كارگرفته شدند. توسعه تكنولوژي توليد فولاد در آن زمان، باعث توليد مقادير بسيار زياد اين محصول گرديد و در نتيجه كاربردهاي جديدي جهت استفاده از آن مثلاً در راه‌آهن و صنايع اتومبيل‌سازي به وجود آمد كه از آن زمان تا به حال، دامنه كاربرد و توليد اين محصول روزبه‌روز گسترش بيشتري يافته است.
توليد جهاني فولاد خام


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%287%29.jpg
درسال 1950 ميلادي، مجموع فولاد توليد شده درجهان كمتر از 200 ميليون تن در سال بوده است و اين در حالي است كه توليد ساليانه فولاد تا پايان سال 2002 بيش از 900 ميليون تن گزارش شده است. جداول زير ميزان فولاد توليد شده و همچنين نرخ رشد توليد فولاد را بين سال¬هاي 1970 تا 2002 نشان مي‌دهند.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%288%29.jpg
از آمارهاي فوق نتيجه‌گيري مي‌شود كه در تمام اين سال¬ها لزوماً توليد جهاني فولاد افزايش نيافته و حتي در بعضي موارد، رشد توليد اين محصولات منفي بوده است؛ همچنين نشان داده شده است كه در چند سال اخير، توليد فولاد رشد بسيار زيادي داشته است.
بزرگترين شركت¬هاي توليد‌كنندة فولاد

جدول زير 40 شركت عمدة توليدكننده فولاد جهان را در سال 2002 ميلادي نشان مي‌دهد كه برحسب ميزان توليد مرتب شده‌اند. در اين ميان شركت اروپايي Arcelor با توليد 44 ميليون تن فولاد در سال 2002، بزرگترين شركت توليدكننده فولاد جهان است. در اين بين، شركت ملي فولاد ايران (NISCO) به عنوان بزرگترين شركت توليدكننده فولاد درخاورميانه در رده 24 جدول قرار دارد كه توليد سالانه آن درسال 2002 برابر 7,3 ميليون تن فولاد خام بوده است.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%289%29.jpg
بزرگ¬ترين كشورهاي توليدكننده فولاد

به دليل اهميت بسيار بالاي توليد فلزات اساسي و از جمله فولاد، كشورهاي صنعتي جهان هركدام به دنبال جايگاه ويژه‌اي در توليد اين محصول هستند. در اين بين كشور چين در سال 2002 ميلادي با توليد بيش از 180 ميليون تن فولاد،‌ مقام اول توليد جهاني را دارا است و اين در حالي است كه كشورهاي ژاپن با توليد 107.7 و آمريكا با توليد 2,92 ميليون تن در سال در رده¬هاي دوم و سوم جهاني قراردارند.
جدول زير وضعيت 39 كشور بزرگ توليدكننده فولاد خام در جهان در سال 2002 ميلادي را نشان مي‌دهد.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250419%20%2810%29.jpg
در حال حاضر در بيش از يكصد كشور جهان محصولات فولادي توليد مي¬شود كه از اين ميان، كشور ايران در سال 2002 ميلادي با توليد 3,7 تن و در حال حاضر با توليد حدود 8 ميليون تن فولاد، به عنوان بيست-و¬دومين توليدكننده اين محصول در جهان و ششمين توليدكننده بزرگ آسيا مطرح است.

ریپورتر
15th March 2010, 01:36 PM
مده‌ترين صادركنندگان و واردكنندگان فولاد
با توجه به آمار ارايه شده براي سال 2001 ميلادي، ژاپن و روسيه به ترتيب با صادرات 5,29 و 6,25 ميليون تن، بزرگ ترين صادركننده فولاد جهان بودند؛ درحالي كه كشورهاي آمريكا و چين به ترتيب با واردات 8,27 و 6,25 ميليون تن،‌ عنوان بزرگ ترين واردكنندگان فولاد در جهان را به خود اختصاص دادند. جالب تر اينكه در اين سال، چين به عنوان بزرگ ترين توليدكننده جهان با 9,150 ميليون تن و آمريكا به عنوان سومين توليدكننده جهاني فولاد با توليدي معادل 1,90 ميليون تن در سال معرفي شده بودند. اين امر بيان گر اين موضوع است كه در سال 2001، اگرچه چين و آمريكا جزو بزرگ ترين توليدكنندگان فولاد بوده اند، ولي حتي به اندازه مصرف داخلي كشورهاي خود نيز محصولات فولادي توليد نكرده بودند.
در اين بين اطلاع از وضعيت كشور ايران نيز خواندني و جالب توجه است. ايران در سال 2001 توانست 9,6 ميليون تن فولاد توليد كند كه از اين مقدار تنها 600 هزارتن آن را به كشورهاي ديگر صادر نمود؛ ‌اين درحالي است كه ايران با واردات 7,4 ميليون تن فولاد رتبه 17 جهاني واردكنندگان فولاد را در اين سال به خود اختصاص داد. البته در حال حاضر ايران توانسته است سقف صادرات فولاد خود را به حدود 5,1 ميليون تن در سال برساند.
جايگاه فولاد ايران در خاورميانه

با توجه به آمار موجود، در سال 2002، از ميان كشورهاي خاورميانه ايران با توليد 3,7 ميليون تن و عربستان سعودي با توليد 6,3 ميليون تن فولاد خام، مهم ترين توليدكنندگان هستند و اين درحالي است كه مجموع توليد ساير كشورهاي خاورميانه درحدود 3,1 ميليون تن است.
نكته جالب ديگر در مورد كشورهاي خاورميانه، درصد توليد و مصرف جهاني فولاد در اين كشورهاست. در سال 2002، كشورهاي خاورميانه تنها موفق به توليد 2,1 درصد از فولاد جهان شده بودند و اين در حالي است كه مصرف حدود 2 درصد فولاد جهان براي اين كشورها گزارش شده است. اين امر مي تواند به عنوان يك مزيت براي صنعت فولاد ايران مطرح باشد به اين صورت كه در كشورهاي همسايه ايران، فولاد زيادي توليد نمي شود ضمن اينكه اين كشورها از بازار مصرف نسبتا‌‌ً خوبي نيز برخوردار هستند. بنابراين براي محصولات فولادي كشور مي-توان يك بازار مصرف بسيار مناسب در كشورهايي مثل عراق، بحرين، افغانستان، پاكستان و حتي تركمنستان، آذربايجان و ارمنستان پيش-بيني كرد.
توليدات چدن در ايران و جهان

درسال 2002 ميلادي كشورهاي چين، ژاپن و روسيه به ترتيب با توليد 7,170 و 81 و 2,46 ميليون تن چدن بزرگ ترين توليدكنندگان اين محصول بودند. ايران در اين سال 2,2 ميليون تن چدن توليد نمود كه تمام اين مقدار در كشور مصرف شد و در اين زمينه صادرات و وارداتي صورت نگرفت.
اشتغال زايي صنعت فولاد

از ديرباز يكي از جنبه‌هاي مهم صنايع فولادي در جهان،اشتغالزايي اين صنعت بوده است به گونه‌اي كه در اين صنعت، نيروي كار زيادي به طور مستقيم و غيرمستقيم به كار گرفته مي‌شده‌اند؛ اما بررسي‌هاي صورت گرفته از كاهش 65 درصدي نيروي كار در صنعت فولاد جهان بين سال هاي 1974 تا 2000 ميلادي خبر مي دهند كه علت آن را مي‌توان جايگزيني تكنولوژي‌هاي جديد نظير ريخته‌گري مداوم و همچنين فرآيندهاي كنترل كامپيوتري در اين صنعت دانست.
البته لازم به ذكر است كه نيروي كار به كار گرفته شده در صنعت فولاد كشور، با كشورهاي پيشرفته و صنعتي بسيار متفاوت است؛ به‌طوريكه در اين كشورها براي توليد هر ميليون تن فولاد به طور مستقيم در حدود 1500 نفر نيروي كار لازم است ولي در ايران، براي توليد يك ميليون تن فولاد به نيروي كار مستقيمي در حدود 4 الي 5 هزار نفر نياز است كه در حدود 3 برابر آمار جهاني كشورهاي پيشرفته است.
کاربرد فولاد در قالب‌هاي تزريق پلاستيک

انتخاب نوع فولاد نقش مؤثري در عمر، عملکرد و هزينه قالب دارد. در اين جا به نقش فولاد در قالب سازي، تأثير عناصر آلياژي در فولاد، دسته بندي فولادها، فولادهاي اجزاي قالب و فولادهاي مورداستفاده براي محفظه قالب هاي پلاستيک (کروکويته) مي پردازيم.
نقش فولاد در قالب سازي

نمودار زير، نشانگر هزينه طراحي، مواد، ماشينکاري، مونتاژ، سود و سربار قالب است و نشان مي دهد که حدود 28 درصد هزينه کل قالب مربوط به مواد است و اين مقدار با توجه به شکل هندسي و پيچيدگي قطعه، تغيير خواهد کرد.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250439%20%281%29.jpg
چنانچه در شکل ملاحظه مي شود بيشتر هزينه هاي توليد، توسط قالب به-صورت غير مستقيم وابسته به فولاد است که با عدم انتخاب فولاد مناسب، باعث تحميل هزينه هاي اضافي به قالب شود.

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/farvardin/01/250439%20%282%29.jpg
خصوصيات قطعه که براي ساخت قالب و انتخاب فولاد مربوطه مؤثر است عبارتند از:
• صافي سطح
• گرين کاري
• خورنده بودن يا ساينده بودن جنس قطعه
• دقت ابعادي
• تيراژ توليدي
• زمان ساخت
جنس قطعات پلاستيکي متنوع است و با توجه به خواص مختلف مواد و به فولادهاي متفاوت براي ساخت قالب، نياز است. در زير برخي ازانواع پلاستيک هاو خصوصيات فولادهاي مناسب براي آنها ارائه شده است.
PC(Poly Carbonate),PMMA(Polymethyl Methacrylate Acrylic) - :

معمولاً براي لنز هاي چراغ استفاده مي شوند و فولاد مورداستفاده مي-بايست خاصيت پوليش پذيري خوب و مقاوم در مقابل خش و اکسيد شدن را دارا باشد باتوجه به‌اينکه PC خاصيت جريان پذيري خوبي ندارد و ماده سختي است، فولاد مورداستفاده براي پليمر فوق بايد تنش تسليم بالا و چقرمگي خوبي داشته باشد.
- POM (Polyoxymethylene), PA(Nylon):

دماي تزريق اين مواد نسبتاً بالا است و براي بست ها و کليپ ها، استفاده مي شود. با توجه به حساسيت هاي ابعادي اين نوع قطعات، فولاد اين قالب ها مي بايست سخت و مقاوم در مقابل سايش باشد.
- PA(Naylon)+GF:

با توجه به سايندگي الياف شيشه، فولاد بايد مقاوم به سايش باشد.
-PP(Polypropylene):

اين نوع پليمر، براي قطعات سپر و گل ‌پخش‌کن استفاده مي شود. با توجه به حجم قطعه بايد فولاد مربوطه، داراي ثبات ابعادي مناسب، مقاوم در مقابل تنش هاي فشاري و داراي قابليت ماشينکاري خوبي بوده و خواص مکانيکي آن يکنواخت باشد.
- PP(Polypropylene), ABS(Acrylonitrile Butadiene Styrene):

براي قطعات تزييني خودرو استفاده مي شود که معمولاً سطح اينگونه قطعات چرمي کاري (گرين) هستند و فولاد قالب مي بايست خاصيت خوبي براي عمليات چرمي کاري (اسيدکاري يا گرين) داشته باشد.
- PVC (Polyvinyl Chloride):

اين پليمر به علت آزادسازي گاز کلر و ترکيب آن با آب موجود در هوا،اسيدکلريک توليد مي کند و باعث خوردگي قالب مي شود. بنابراين استفاده از فولادهاي مقاوم در مقابل خورندگي براي قالب هاي فوق پيشنهاد مي‌شود.
با عدم انتخاب فولاد صحيح، عمر قالب کوتاه مي شود و قطعه توليدي کيفيت مطلوب را نخواهدداشت که منجر به ساخت مجدد قالب و هزينه هاي اضافي مي شود.
خواص فولاد

استحکام فولاد پارامتر کلي کيفيت است که براي سنجش آن بايد معيارهاي گوناگون مکانيکي خواص وجود داشته باشد. اين معيارها در ادامه، ارائه شده است .
خصوصيات مکانيکي فولادها

- تنش تسليم (Yield Stress) : ميزان تنش کششي که در آن قططه شروع به تغيير شکل پلاستيک مي کند.
- چکشخواري(Ductility Brittleness): قابليت شکل پذيري ماده درحالت پلاستيک را بدون خطر شکست، چکشخواري مي گويند.
- خزش (creep): مدت زماني که طول مي کشد که قطعه اي، تحت تنش کششي تغيير شکل دائم، داشته باشد.
-چقرمگي(Toughness): مقدار کار لازم براي شکستن واحد حجم ماده است.
- سختي(Hardness): مقاومت در مقابل فرو رفتن مواد ديگر در سطح قطعه را سختي يا مقاومت در مقابل خراش مي گويند.
- استحکام در دماي بالا: خواص مکانيکي قطعه نبايد با افزايش دما تغيير محسوسي کند.
خصوصياتي از فولاد كه در قالب هاي پلاستيک در نظر گرفته مي شود و با توجه به انتظارات ما از هر کدام از آنها، نوع فولاد انتخاب مي-شود.
• قابليت ماشينکاري
• قابليت پوليشکاري
• عمليات حرارتي
• عمليات به‌سازي سطح
• مقاوم در برابر سايش
• مقاوم در مقابل خوردگي
• مقاوم در مقابل تنش هاي فشاري
• قابليت جوشکاري
• چقرمگي
فولادهاي قالب هاي پلاستيک

فولادهاي قالب هاي پلاستيک با توجه به چقرمگي آنها (نوع عمليات حرارتي) در گروه هاي زير به بازار عرضه مي شوند:
پيش سخت شده (Pre Hardened)
آنيل(Annealed)
پير سخت شونده(Age Hardening)
فولادهاي پيش سخت شده (Pre Hardened):

اين فولادها به‌صورت سخت کاري شده و باز پخت شده به بازار ارائه مي شوند و مستقيماً مي توان نقش قالب را روي آنها اجرا و بهره برداري کرد.
مزاياي اين فولادها

- کوتاه شدن فرايند هاي ساخت: اين فولاد، در فرايند بهره برداري، قبلاً سخت کاري شده و نيازي به عمليات حرارتي و فرايند ماشين کاري بعد از آن را ندارد.
- عدم ايجاد ترک هاي ريز در اثر عمليات حرارتي: معمولاًٌ فولادها بعد از عمليات حرارتي در اثر شوک هاي حرارتي تابيده و در سطح آنها ترک هاي ريزي به‌وجود مي آيد. نظر به اينکه اين گونه فولادها پيش از عرضه به بازار توسط توليد کننده فولاد سختکاري شده اند و بعد از فرايندهاي ماشينکاري نيازي به‌عمليات حرارتي ندارند، ترک هاي ريز و پسماند تنش هاي حرارتي در فولاد، وجود نخواهد داشت و طول عمر آن بالاتر خواهدبود.
معايب اين فولادها

- زمان ماشين کاري اين فولادها با توجه به سختي آنها بيشتر از فولادهاي آنيل شده است.
- با توجه به اينکه سختي اينگونه فولادها به‌تدريج از سطح به عمق کم مي شود، قالب هايي که توسط اينگونه فولادها تهيه مي شوند داراي سختي يکنواخت نيستند.
- براي رزين هايي که بسيار ساينده يا داراي دماي پروسه بسيار بالا هستند، مناسب نيستند.
فولادهاي پير سخت شونده(Age Hardening)

سختي اين فولادها شبيه فولادهاي پيش سخت شده است که براي افزايش سختي آن مي توان فولاد را عمليات حرارتي کرد.
باتوجه به‌اينکه دماي گرم شدن آن به‌هنگام عمليات حرارتي حدود 500 الي 600 درجه سانتيگراد است، فولاد دچار تابيدگي يا ترک هاي سطحي نمي شود و مي توان آن را بدون فرايندهاي جانبي، استفاده کرد.
ثبات ابعادي اينگونه فولادها در طولاني مدت خوب است.
مراحل بهره برداري از فولاد
ماشينکاري نيمه نهايي يا نهايي
عمليات حرارتي
ماشينکاري نهايي چنانچه مورد نياز باشد
مراحل فرايندهاي بهره برداري اينگونه فولادها بيشتر از پيش سخت شده است.
فولادهاي آنيل

اين فولادها به‌صورت آنيل شده به بازار ارائه مي شوند.
مراحل بهره برداري از فولاد
ماشينکاري اوليه
عمليات حرارتي
ماشينکاري نهايي
مزاياي اين فولادها

باتوجه به‌اينکه بعد از ماشينکاري روي فولاد، عمليات حرارتي بر روي آن انجام مي‌شود، برخلاف فولادهاي پيش سخت شده سطح محفظه قالب داراي سختي و خصوصيات مکانيکي يکنواختي خواهدبود. به‌دليل آنيل‌بودن فولاد در هنگام ماشينکاري، زمان اين فرايند کوتاه تر مي شود.
مقاوم بودن نسبت به سايش و چقرمگي
معايب

بعد از عمليات حرارتي احتمال ايجاد ترک هاي ريز در سطح قطعه و تابيدگي آن وجود دارد که پس از آن با عمليات ماشينکاري نهايي از بين مي رود. اين موضوع باعث طولاني تر شدن فرايندهاي ساخت قالب مي-شود.
فولادهای ماریجینگ ( 18 % Ni)

یكی از نیازهای اساسی صنایع پیشرفته احتیاج به موادی با قابلیت اطمینان بالا از استحكام و تافنس شكست می باشد . در این راستا محققان زیادی فولادهای استحكام بالای مختلفی را گسترش داده اند ؛ كه در این میان تنها فولادهای ماریجینگ توانسته اند به هر دو نیاز صنایع پیشرفته پاسخ گویند . مهمترین كاربرد این فولاد ها در صنایع نظامی ، هوافضا ، اجزاء الكترومكانیكی و ... است.
این فولادها كه تعلق به خانواده آلیاژهای پایه آهن دارند . ابتدا تحت پروسه استحاله مارتنزیت قرار می گیرند و سپس به وسیله پیری یا رسوب سختی دنبال می شوند . كه كلمه Maraging از دو كلمه Martensite و Aging گرفته شده است .
فولادهای ماریجینگ دارای 18 % Ni به دو كلاس گسترده تقسیم می شوند. كه بستگی به عناصر تقویت كننده در آنالیز شیمیایی آنها دارد . فولاد ماریجینگ اورجینال در اوایل 1960 معرفی شد ، كه كبالت به عنوان عنصر تقویت كننده و استحكام بخش ( 7-12% ) در فولاد ماریجینگ 18 % Ni بكار برده می شد . در اوایل دهه 70 كار بر روی این فولادها كمرنگ شد . كه دلیل آن افزایش قیمت كبالت بود كه منجر به نوع جدیدی از فولادهای ماریجینگ شد ، این دسته تیتانیوم را به عنوان عامل اصلی تقویت كننده به همراه داشتند. درجه تقویت كبالت یا " C-type 18 Ni Maraging " به وسیله حرف " C " در شناسائی این كلاس انتخاب می شود ؛ همچنین درجه استحكام تیتانیوم یا " T-type 18 Ni Maraging " را با حرف " T " نشان می دهند.
این دو نوع فولاد با توجه به میزان استحكام آنها به 200 ، 250، 300، 350 درجه پیری طبقه بندی می شوند و به طور C-200 و T-200 آنها را نمایش می دهند . استحكام دهی به وسیله رسوب دهی آسان اجزاء فلزی در حین عملیات پیر سازی صورت می گیرد . كه این رسوب سختی به واسطه عناصر آلیاژی همچون Co , Mo , Ti در مارتنزیت Fe-Ni با كربن بسیار كم 0.03% یا كمتر صورت می گیرد.
فولاد های ماریجینگ در شرایط آنیل محلول سازی تهیه می شوند پس دارای چقرمگی و نرمی نسبی ( 28 - 32 RC ) هستند . پس به سهولت شكل می گیرند و ماشین می شوند . خواص كامل آنها از طریق پیرسازی مارتنزیت بدست می آید .
خصوصیات فولادهای ماریجینگ :

الف ) خواص مكانیكی عالی :
1-استحكام نهایی و استحكام تسلیم بالا
2-تافنس ، داكتیلیتی و مقاومت به ضربه بالا در مقایسه با فولاد كوئنچ و تمپر شده با استحكام مشابه
3-استحكام خستگی زیاد
4-استحكام فشاری بالا
5-سختی و مقاومت به سایش كافی برای بعضی از ابزار های كاربردی
ب) خصوصیات عملیات حرارتی :
1-دمای مورد نیاز برای كوره پایین است
2-رسوب سختی و عملیات حرارتی پیری
3-انقباض یكنواخت و قابل پیش بینی در طول عملیات حرارتی
4-حداقل اعوجاج در طول عملیات حرارتی
5-سخت شدن بدون كوئنچ كردن
6-درصد پایین كربن ، كه جلوگیری از مشكل دكربوره شدن می كند.
ج) كارپذیری عالی
1-ماشینكاری آسان
2-مقاومت بالا در برابر انتشار ترك
3-شكل پذیری آسان در حالت سرد ، گرم و داغ
4-قابلیت جوشكاری خوب به خاطر درصد پایین كربن
5-مقاومت به خوردگی خوب كه نرخ خوردگی آن در حدود نصف فولادهای كوئنچ و تمپر شده است
این فاكتورها نشان می دهد كه فولادهای ماریجینگ در كاربردهایی مثل شفت ها و اجزایی كه تحت خستگی ضربه ای همچون كلاچ ها و چكش ها بهترین استفاده را دارد.
تولید و فرآوری فولادهای ماریجینگ

روش متداول برای تولید فولادهای ماریجینگ به ترتیب زیر است :
1-ذوب و ریخته گری
2-همگن سازی
3-آهنگری و نورد گرم
4-آنیل معمولی
5-پیر سازی
در فولادهای ماریجینگ رسیدن به استحكام و تافنس بالا مستلزم كنترل دقیق ریزساختار می باشد. از طرف دیگر چون آخال های موجود در زمینه این نوع فولادها تاثیر منفی شدیدی بر روی تافنس شكست دارند. باید تركیب ، ابعاد و توزیع آخال ها كنترل گردد. در این نوع فولادها به علت زیاد بودن عناصر آلیاژی جدایش شدید این عناصر در حین انجماد وجود دارد كه این جدایش تاثیر زیادی بر روی كاهش قابلیت آهنگری ، نورد گرم و .. خواهد داشت . پس لازم است كه شرایط انجمادی مناسب به صورت كنترل شده و سریع برای فولادها مهیا گردد. برای تهیه این فولادها از روش ذوب چند مرحله ای استفاده می شود. روش استاندارد برای تهیه فولادهای ماریجینگ استفاده از روش ذوب تحت خلاء دو مرحله ای می باشد كه در آن ابتدا به روش ذوب القائی تحت خلاء آلیاژ سازی صورت گرفته و سپس شمش تهیه شده به روش ذوب مجدد قوسی تحت خلاء الیاژ سازی صورت گرفته و سپس شمش تهیه شده به روش ذوب مجدد قوسی تحت خلا تصفیه می گردد.
عملیات حرارتی همگن كردن نیز به منظور افزایش قابلیت شكل پذیری شمش ها صورت می گیرد . همگن سازی فولاد ماریجینگ در 1250 c0 به مدت 2 الی 3 ساعت انجام می گیرد و به دنبال آن فولاد تحت كار مكانیكی گرم قرار گرفته و یا اینكه سریع سرد می گردد. این فولادها تحت انواع كارهای مكانیكی از قبیل آهنگری ، نورد ، اكستروژن گرم قرار می گیرند . بعد از مراحل فوق فولادهای ماریجینگ تحت عملیات آستنیته و سپس پیری قرار می گیرند.
عملیات حرارتی فولادهای ماریجینگ

فولادهای ماریجنینگ فولادهای پر آلیاژ-کم کربن-آهن ونیکل باساختار مارتنزیتی هستند که دارای ترکیبی عالی از استحکام وتافنسی به مراتب بالاتر از فولادهای پر کربن کوینچ شده می باشند.
این فولادها دو کاربرد بحرانی ومتمایز فولادهای کربن آبداده که استحکام بالا وتافنس وانعطاف پذیری خوب مورد نیاز است را دارا میباشد . فولادهای کربنی آبداده استحکامشان را از مکانیسمهای تغییر فاز وسخت گردانی بدست میآورند. ( مثل شکل گیری مارتنزیت و بینیت ) واین استحکام پس از رسوب گیری کاربیدها در طول مدت تمپر کردن بدست می آید. درمقایسه فولادهای ماریجینگ استحکامشان را از شکل گیری یک فولاد مارتنزیتی کم کربن انعطاف پذیرو سخت آهن ونیکل بدست می آورند که می توانند بوسیله رسوب گیری ترکیبات بین فلزی در طول مدت پیرسختی استحکام بیشتری داشته باشند. دوره ماریجینگ بر اساس پیرسختی ساختار مارتنزیتی وضع شده است.
متالورژی فیزیکی:

قبلا اشاره شد که استحکام وتافنس خوب فولادهای ماریجینگ بوسیله پیر سختی یک ساختار مارتنزیتی کم کربن بسیار انعطاف پذیربا استحکام نسبتا خوب بدست میآید.در حین پیرسازی ساختار مارتنزیتی هدف اصل روش توزیع یکنواخت رسوبات بین فلزی خوب است که صرف تقویت کردن بافت مارتنزیتی می شود. یکی دیگر از هدفهای اصلی در مدت پیر سازی فولادهای ماریجینگ کم کردن یا حذف کردن برگشت فاز نیمه پایدارمارتنزیت به آستنیت و فریت می باشد .
شکل گیری مارتنزیت :

مارتنزیت فولادهای ماریجینگ معمولا مکعب مرکز دار (bcc ) کم کربن است که این مارتنزیت شامل چگالی بالای نابجایی می باشد اما نه به صورت دوقلویی. در حین سرد شدن بعد از تابکاری انحلالی آستنینت fcc بوسیله بازگشت برشی کم نفوذ تجزیه به ساختارهای متعادل به ساختار bcc تبدیل میشود.این تبدیل آستنیت به مارتنزیت ناپایدار اتفاق نمی افتد تا دمای شروع مارتنزیت (Ms) بدست آید ودمای شروع مارتنزیت باید به اندازه کافی بالا باشد بنابراین یک تبدیل کامل به مارتنزیت قبل از خنک شدن فولاد تا دمای اتاق اتفاق می افتد.
بیشتر انواع فولادهای ماریجینگ دمای شروع مارتنزیت حدود 200 تا300 درجه سانتیگراد را دارند ودر دمای اتاق به طور کامل مارتنزیت هستند . نتیجه ساختار مارتنزیت یک فولاد نسبتا قوی و فوق العاده انعطاف پذیر میباشد .
عناصر آلیاژی دمای شروع مارتنزیت را بطور قابل ملاحظه ای تغییر می دهد اما تغییر مشخصه این استحاله به مقدار زیادی بستگی به سرعت سرد شدن دارد.
اغلب عناصرآلیاژی اضافه شده در فولادهای ماریجینگ (به استثناء کبالت ) درجه حرارت شروع مارتنزیت را کاهش می دهند.
یکی از دونوع ممکن مارتنزیت که در سیستم آلیاژی آهن- نیکل ممکن است شکل بگیرد بستگی به مقدار نیکل در ماده مورد سوال میباشد.در سرعتهای سرد کردن بالا در فولادهای شامل 5 تا 10 درصد نیکل ،و بیش از 10 درصد پایین آوردن سرعت سرد کردن، لازمه شکل گیری مارتنزیت در فولادها می انجامد وشکل گیری کامل ساختار مارتنزیتی را تعیین می کند.در فولادهای شامل 25 درصد نیکل ، مارتنزیت لایه ای وبالای 25 درصد مارتنزیت دو قلویی داریم .مطالعه برروی آلیاژهای مارجنیگ آهن – 7 درصد کبالت 5 درصد مولیبدن و4/. درصد تیتانیم در ( ماریجینگ 18 درصد نیکل 250 ) شامل مقادیر متفاوت نیکل نشان می دهد که یک ساختار مارتنزیتی لایه ای با مقادیر نیکل بیش از 23 درصد بدست می آید .
اگر چه مقادیر نیکل بیش از 23 درصد شکل گیری مارتنزیت دو قلویی را نتیجه داده است . معمولا یک ساختار مارتنزیتی لایه ای در فولادهای ماریجینگ ترجیح داده می شود زیرا در مدت پیر سازی این ساختار سخت تر از یک ساختار مارتنزیتی دو قلویی میباشد.
چگونگي انجام عملیات حرارتی فولادهای ماریجینگ:

تابکاری انحلالی : تابکاری انحلالی مستلزم حرارت دادن آلیاژی به اندازه کافی،بالای درجه حرارت پایان آستنیت و نگهداری در زمان کافی تا جا گیری عناصر در محلول جامد و سرد کردن آن تا دمای اتاق .متداول ترین سیکل عملیات حرارتی برای فولادهای ماریجینگ 18 درصد نیکل 200 ،250 300 درگیر کردن آلیاژهای در دمای 815 درجه سانتیگراد به مدت یک ساعت و سپس سرد کردن آن بوسیله هوا.تولید برای کاربردهای فورجینگ معمولا در حالت آنیل نشده خریداری می شود زیرا حرارت دادن سیکل تابکاری حرارتی قبلی را خنثی میکند .استفاده از خلا ، کنترل گردش هوای اتمسفر ، تمام نمک خنثی یا کوره های سیال تخت برای حداقل کردن صدمات سطحی ممکن است مورد نیاز باشد .
اثرزمان و درجه حرارت تابکاری بر خواص پیرسازی: اطلاعات نشان میدهد که بیشترین استحکام در دمای تابکاری انحلالی 800 تا815 درجه بوجود می آید. استحکام وانعطاف پذیری پایین تر با درجه حرارت تابکاری از 760 تا 800 درجه ناشی از انحلال ناقل عناصر سخت کننده میباشد و کاهش استحکام مربوط به درجه حرارت تابکاری انحلالی بالای 815 درجه ناشی از درشتی ساختار دانه ها میباشد. سرعت سرد شدن بعد از تابکاری انحلالی از اهمیت کمتری برخورداراست چون اثر کمتری بر خواص زیر ساختاری ومکانیکی دارد.
اصلاح دانه ها بوسیله سیکل حرارتی : سیکل حرارتی فولادهای ماریجینگ بین درجه حرارت پایان مارتنزیت و دمای بسیار بالاتر از دمای تابکاری انحلال می تواند برای اصلاح ساختار دانه هایی که درشت هستند استفاده شود.این عمل استحاله برشی کم نفوذ ، مارتنزیت به آستنیت واز آستنیت به مارتنزیت نیروی محرکه برای تبلور مجدد در حین سیکلهای حرارتی تامین میکند.
پیر سختی:

نوعی پیر سختی بعد از تابکاری انحلالی معمولا شامل حرارت دادن آلیاژ تا رنج دمایی 455 تا 510 درجه سانتیگراد و نگاه داشتن در این دما به مدت 3 الی 12 ساعت وخنک کردن آن در معرض هوا تا دمای اتاق می باشد. استفاده از فولادهای ماریجینگ در کاربردهای مانند ابزارآلات دایکست لازم است استفاده از یک حرارت پیر سازی تقریبا 530 درجه سانتیگراد که ساختار متعادلی را فراهم می کند و از نظر حرارتی تثبیت شده است. هنگامی که زمان پیر سازی افزایش پیدا میکند تا جائیکه به نقطه ای می رسیم که سختی واستحکام شروع به کاهش میکند به علت شکل گیری بازگشت آستنیت که معمولا از ذرات ریز باندهای آستنیت دور دانه ای قبلی شروع میشود.
کار سرد وپیر سازی :

استحکام تسلیم واستحکام نهایی کششی فولادهای ماریجینگ می توانند بوسیله کار سرد قبل از پیر سازی تا 15 درصد افزایش پیدا کنند . بوسیله کار سرد قبل از تابکاری انحلالی ماده بالای 50 درصد کاهش قبل از پیر سازی ،نتیجه رسیده است .این سازگاری کمی با انعطاف پذیری وچغرمگی است .از کاهش سرما بیش از 50 درصد باید خوداری شود زیرا ممکن است که پوسته پوسته شدن تولیدات بوجود آید.
نیتریده کردن :

سختی سطح را می تواند بوسیله نیتریده کردن فولادهای ماریجینگ در آمونیاک بدست آید . سطح سختی معادل 65 تا70 راکول سی به عمق 15/0 میلیمتر بعد از نیتریده کردن به مدت 24 الی 48 ساعت در دمای 455 درجه سانتیگراد میتواند بدست آید. نیترده کردن در این دما می تواند همزمان با پیرسختی اتفاق بیافتد . حمام نمک نیتریده کردن برای 90 دقیقه در دمای 540 درجه سانتیگراد بخوبی می تواند این عمل را شکل بدهد اگر چه برای پرهیز از فوق پیر سازی شدن بیش از حد این عمل باید بخوبی کنترل شود. استحکام خستگی ومقاومت به سایش فولادهای ماریجینگ بوسیله نیتریده کردن بهبود پیدا می کنند.
پخت :

عملیاتی است برای حذف هیدروژن که در دمای پایین بین150 تا 200 درجه سانتیگراد قرارمیگیرد. تردی هیدروژن ممکن است در فولادهای ماریجینگ اتفاق بیافتد وقتی که در معرض کارهای الکترومکانیکی مثل آبکاری قرار میگیرد. حذف هیدروژن کار مشکلی است باید در یک سیکل عملیات حرارتی (پخت) بین 3تا 10 ساعت قرار بگیرد.
سند بلاست موثرترین روش برای حذف اکسید ناشی عملیات حرارتی است . فولادهای ماریجینگ را میتوان بوسیله مواد شیمیائی تمیز کننده مثل اسید شوئی در محلول اسید سولفوریک یا محلول اسید كلريدريك و اسيدنيتريك واسید هیدروفلوریک . اگر چه باید مراقب بود که بیش از حد اسید شوئی نشود
عملیات حرارتی كه روی این نوع فولادها انجام می گیرد عبارت است از عملیات محلول سازی در دمای بالاتر از 1000 C0 و نگهداری در این دما به مدت یك ساعت به منظور اینكه كاربیدهای آلیاژی كاملا حل شوند و ساختار 100% آستنیته تشكیل گردد.
به علت وجود عناصر آلیاژی منحنی TTT برای این فولاد به سمت راست حركت می كند. پس با سرد كردن این فولاد در هوا نیز ساختاری مارتنزیتی داریم كه مارتنزیت بدست آمده نرم بوده و قابلیت كار مكانیكی دارد. ساختار مارتنزیتی ایجاد شده را در 480-500 درجه تمپر می كنند. این تمپر كردن منجر به یك رسوب سختی قوی می گردد. رسوبات بین فلزی به واسطه مارتنزیت كه فوق اشباع از عناصر آلیاژی است صورت می گیرد . ساختار فولادهای ماریجینگ تجاری با حداكثر سختی می تواند شامل رسوبات كوهرنت از فاز نیمه پایدار Ni3Mo و Ni3Ti باشد. ذرات میان مرحله ای اینتر متالیك در فولاد ماریجینگ به شدت پراكنده هستند كه ناشی از رسوب آنها در نابجایی ها است . ساختار فولادهای ماریجینگ دارای دانسیته بالایی از نابجایی ها است . كه در چیدمان مجدد لتیس مارتنزیت ظاهر می شوند . در مارتنزیت دوقلویی نشده ، چگالی دیسلوكیشن ها 1011 - 1012 cm-2 است كه مشابه فلزات شدیدا كار سخت شده است.
این طور فرض می شود كه رسوب فازهای میان مرحله ای در هنگام تمپر كردن فولادهای ماریجینگ مقدم تر از جدایش اتم های اجزاء آلیاژی در دیسلوكیشن ها است . این اتمسفر شكل گرفته در دیسلوكیشن ها به عنوان مراكزی برای تمركز لایه های بعدی مارتنزیت كه با عناصر آلیاژی اشباع شده اند بكار می رود. در فولادهای ماریجینگ ساختار دیسلوكیشن ها كه در ضمن استحاله مارتنزیت شكل می گیرد . بسیار پایدار است . و در طی گرمادهی بعدی و در دمای بهینه تمپرینگ عملا بدون تغییر می ماند .
دانسیته بالای دیسلوكیشن ها در طی تمپرینگ ممكن است به علت فضای محسوس و پین شدن انها بوسیله تفرق رسوبات باشد . نگه داری زیاد در یك دمای تمپر بالا ( بیشتر یا 550 C0 ) می تواند رسوبات را درشت و فضای میان ذره ای را افزایش دهد . كه بر خلاف آن از دانسیته دیسلوكیشن ها كاسته می شود . با زمان نگه داری بالا رسوبات سمی كوهرنت اینتر متالیك با رسوبات درشت اینكوهرنت از فازهای پایداری چون Fe2Mo یا Fe2Ni جایگزین می شوند. در دمای افزایش یافته تمپرینگ ؛ فولادهای ماریجینگ ممكن است متحمل استحاله معكوس مارتنزیت شوند . به طور كلی می توان گفت كه خصوصیات استحكامی این نوع از فولاد ها بعد از یك نرمی به سوی ماكزیمم افزایش پیدا می كند . سختی موثر به علت شكل گیری جدایش در دیسلوكیشن ها و شكل گیری رسوبات كوهرنت از فازهای میانی همچون Ni3Ti و Ni3Mo است . دلیل نرم شدن را نیز می توان گفت كه به علت جایگزینی رسوبات پراكنده كه فضای میان ذره ای زیادی دارند و استحاله معكوس مارتنزیت است.
استفاده از کامپوزیت‌ها به جای فولاد

استفاده از مصالح جدید و به خصوص کامپوزیت‌ها به جای فولاد در دهة اخیر در دنیا به شدت مورد علاقه بوده است. کامپوزیت‌ها از یک مادة چسباننده (اکثراً اپوکسی) و مقدار مناسبی الیاف تشکیل یافته است. این الیاف ممکن است از نوع کربن، شیشه، آرامید و ... باشند، که کامپوزیت حاصله به ترتیب، به نام AFRP, GFRP, CFRP خوانده می‌شود. مهمترین حسن کامپوزیت‌ها، مقاومت بسیار عالی آنها در مقابل خوردگی است. به همین دلیل کاربرد کامپوزیت‌های FRP در بتن‌آرمه به جای میلگردهای فولادی، بسیار مورد توجه قرار گرفته است لازم به ذکر است که خوردگی میلگرد در بتن مسلح به فولاد به عنوان یک مسئلة بسیار جدی تلقی می‌گردد. تاکنون بسیاری از سازه‌های بتن‌آرمه در اثر تماس و مجاورت با سولفاتها، کلرورها و سایر عوامل خورنده دچار آسیب جدی گردیده‌اند، چنانچه فولاد به کار رفته در بتن تحت تنش‌های بالاتر در شرایط بارهای سرویس قرار گیرند، این مسئله به مراتب بحرانی‌تر خواهد بود. یک سازة بتن‌آرمة معمولی که به میلگردهای فولادی مسلح است، چنانچه در زمان طولانی در مجاورت عوامل خورنده نظیر نمک‌ها، اسیدها و کلرورها قرار می‌گیرد، قسمتی از مقاومت خود را از دست خواهد داد. به علاوه فولادی که در داخل بتن زنگ می‌زند، بر بتن اطراف خود فشار آورده و باعث خرد شدن آن و ریختن پوستة بتن می‌گردد.
تاکنون تکنیک‌هایی جهت جلوگیری از خوردگی فولاد در بتن‌آرمه توسعه داده شده و به کار رفته است که در این ارتباط می‌توان به پوشش میلگردها توسط اپوکسی، تزریق پلیمر به سطح بتن و یا حفاظت کاتدیک اشاره نمود. با این وجود هر یک از این روش‌ها تا حدودی و فقط در بعضی از زمینه‌ها موفق بوده‌اند. به همین جهت به منظور حذف کامل خوردگی میلگردها، توجه محققین و متخصصین بتن‌آرمه به حذف کامل فولاد و جایگزینی آن با مواد مقاوم در مقابل خوردگی معطوف گردیده است. در همین راستا کامپوزیت‌های FRP )پلاستیک‌های مسلح به الیاف) از آنجا که به شدت در محیط‌های نمکی و قلیایی در مقابل خوردگی مقاوم هستند، موضوع تحقیقات گسترده‌ای به عنوان یک جانشین مناسب برای فولاد در بتن‌آرمه، به خصوص در سازه‌های ساحلی و دریایی گردیده‌اند.
لازم به ذکر است که اگر چه مزیت اصلی میلگردهای از جنس FRP مقاومت آنها در مقابل خوردگی است، با این وجود خواص دیگر کامپوزیت‌های FRP نظیر مقاومت کششی بسیار زیاد (تا ۷ برابر فولاد)، مدول الاستیسیتة قابل قبول، وزن کم ، مقاومت خوب در مقابل خستگی و خزش، عایق بودن در مقابل امواج مغناطیسی و چسبندگی خوب با بتن، مجموعه‌ای از خواص مطلوب را تشکیل می‌دهد که به جذابیت کاربرد FRP در بتن‌آرمه افزوده‌اند. اگر چه بعضی از مشکلات نظیر مشکلات مربوط به خم کردن آنها و نیز رفتار کاملاً خطی آنها تا نقطة شکست، مشکلاتی از نظر کاربرد آنها فراهم نموده‌اند که امروزه موضوع تحقیقات گسترده‌‌ای به عنوان یک جانشین مناسب برای فولاد در بتن‌آرمه، به خصوص در سازه‌های ساحلی و دریایی گردیده‌اند.
با توجه به آنچه که ذکر شد ، بسیار به جاست که در ارتباط با کاربرد کامپوزیت‌های FRP در بتن‌ سازه‌های ساحلی و دریایی مناطق جنوبی ایران و به خصوص منطقة خلیج‌فارس، تحقیقات گسترده‌ای صورت پذیرد. در همین راستا مناسب است که تحقیقات مناسبی بر انواع کامپوزیت‌های FRP(AFRP, CFRP, GFRP) و میزان مناسب بودن آنها برای سازه‌های دریایی که در منطقة خلیج‌فارس احداث شده است، صورت پذیرد. این تحقیقات شامل پژوهش‌های گستردة تئوریک بر رفتار سازه‌های بتن‌آرمة متداول در مناطق دریایی (به شرط آنکه با کامپوزیت‌های FRP مسلح شده باشند) خواهد بود. در همین ارتباط لازم است کارهای تجربی مناسبی نیز بر رفتار خمشی، کششی و فشاری قطعات بتن‌آرمة مسلح به کامپوزیت‌های FRP صورت پذیرد.
لازم به ذکر است که چنین تحقیقاتی در ۱۰ سال اخیر در دنیا صورت گرفته که نتیجة این تحقیقات منجمله آئین‌نامة ACI-۴۴۰ است که در چند سال اخیر انتشار یافته است. با این وجود کامپوزیت‌های FRP در ایران کماکان ناشناخته باقی مانده است و به خصوص کاربرد آنها در بتن‌آرمه در سازه‌های ساحلی و دریایی کاملاً دور از چشم متخصصین و مهندسین ایرانی بوده است. تحقیقاتی که در این ارتباط صورت خواهد گرفت، می‌تواند منجر به تهیة دستورالعمل و یا حتی آئین‌نامه‌ای جهت کاربرد FRP در بتن‌آرمه به عنوان یک جسم مقاوم در مقابل خوردگی در سازه‌های بندری و دریایی ایران گردد. این حرکت می‌تواند فرهنگ کاربرد این مادة جدید در بتن‌آرمة ایران را بنیان گذارد و از طرفی منجر به صرفه‌جویی‌ میلیاردها ریال سرمایه‌ای ‌شود که متأسفانه همه ساله در سازه‌های بتن‌آرمة احداث شده در مناطق جنوبی ایران (به خصوص در مناطق بندری و دریایی)، به جهت خوردگی میلگردها و تخریب و انهدام سازة بتنی، به‌هدر می‌رود.
مآخذ :
http://www.worldsteel.org
http://www.uneptie.org/
http://www.rahyarbamin.com
http://www.netiran.com/
http://www.key-to-steel.com/
http://www.bamehrgan.com/
http://www.sanatekhodro.com/
http://steel-institute.ir/
http://www.infosanat.com
http://metallurg.mihanblog.com
آفتاب
دانشنامهٔ رشد
مراجع:
گلعذار، محمدعلی - عملیات حرارتی فولادها - انتشارات دانشگاه صنعتی اصفهان- ۱۳۸۳
• M. S. Andrade, O. A. Gomes, J. M. C. Vilela, A. T. L. Serrano and J. M. D. de Moraes, Formability Evaluation of Two Austenitic Stainless Steels, Journal of the Brazilian Society of Mechanical Science & Engineering, 24, 47-50 2004.
• A. Westgren and G. Phragmen, X-ray studies on the crystal structure of steel, Journal of Iron Institute, 105, 241-262, 1922.
• H. K. D. H. Bhadeshia, Bainite in Steels, 2nd Edition, Institute of Materials, Woodhead Pub Ltd, 2001, ISBN 1861251122
• Zenji NISHIYAMA, Atsuo KORE'EDA and Ken'ichi SHIMIZU, Morphology of the Pearlite Examined by the Direct Observation Method of Electron Microscopy, Journal of Electron Microscopy, 7, 41-47, 1959.
• V. B. Spiridonov, Yu. A. Skakov and V. N. Iordanskii, Microstructure of martensite in chromium-nickel steel, Metal Science and Heat Treatment, 6, 630-632, 1964. doi:10.1007/BF00648705
• . The family of steels for plastic moulding- LUCCHINI SIDERMER -MECCANICA- June 2005
• . Tool steels for the plastics industry-Edelstahlwerke Buderus AG-2007
• . Plastic mould steels-FLETCHER EASYSTEEL-2007
• . Steels for plastic moulding-EDELSTAHL WITTEN- KREFELD GMBH-2007
• . Plastic mould steels- BOHLER-11.2003
• . Plastic mould steels- ESCHMANN STAHL-2007
• . Table of plastic steels properties- ASSAB-2008

saeid_ms
18th May 2010, 01:00 PM
عالی بود..مرسی

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد